混沌散射中的半经典解离估计

S. Nonnenmacher, M. Zworski
{"title":"混沌散射中的半经典解离估计","authors":"S. Nonnenmacher, M. Zworski","doi":"10.1093/AMRX/ABP003","DOIUrl":null,"url":null,"abstract":"We prove resolvent estimates for semiclassical operators such as − h 2 Δ + V(x) in scattering situations. Provided the set of trapped classical trajectories supports a chaotic flow and is sufficiently filamentary, the analytic continuation of the resolvent is bounded by h − M in a strip whose width is determined by a certain topological pressure associated with the classical flow. This polynomial estimate has applications to local smoothing in Schrodinger propagation and to energy decay of solutions to wave equations.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"16 1","pages":"74-86"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Semiclassical resolvent estimates in chaotic scattering\",\"authors\":\"S. Nonnenmacher, M. Zworski\",\"doi\":\"10.1093/AMRX/ABP003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove resolvent estimates for semiclassical operators such as − h 2 Δ + V(x) in scattering situations. Provided the set of trapped classical trajectories supports a chaotic flow and is sufficiently filamentary, the analytic continuation of the resolvent is bounded by h − M in a strip whose width is determined by a certain topological pressure associated with the classical flow. This polynomial estimate has applications to local smoothing in Schrodinger propagation and to energy decay of solutions to wave equations.\",\"PeriodicalId\":89656,\"journal\":{\"name\":\"Applied mathematics research express : AMRX\",\"volume\":\"16 1\",\"pages\":\"74-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied mathematics research express : AMRX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/AMRX/ABP003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/AMRX/ABP003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

我们证明了散射情况下- h2 Δ + V(x)等半经典算子的可解估计。如果捕获的经典轨迹集支持混沌流动并且足够丝状,则解析延拓的边界为h−M,其宽度由与经典流动相关的一定拓扑压力决定。该多项式估计可应用于薛定谔传播中的局部平滑和波动方程解的能量衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semiclassical resolvent estimates in chaotic scattering
We prove resolvent estimates for semiclassical operators such as − h 2 Δ + V(x) in scattering situations. Provided the set of trapped classical trajectories supports a chaotic flow and is sufficiently filamentary, the analytic continuation of the resolvent is bounded by h − M in a strip whose width is determined by a certain topological pressure associated with the classical flow. This polynomial estimate has applications to local smoothing in Schrodinger propagation and to energy decay of solutions to wave equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信