基于物理信息的卷积神经网络室内定位

Farah Ashqar, Rakan Khoury, Caroline Wood, Yi-Hsuan Yeh, Aristeidis Seretis, C. Sarris
{"title":"基于物理信息的卷积神经网络室内定位","authors":"Farah Ashqar, Rakan Khoury, Caroline Wood, Yi-Hsuan Yeh, Aristeidis Seretis, C. Sarris","doi":"10.1109/APS/URSI47566.2021.9704309","DOIUrl":null,"url":null,"abstract":"The received signal strength indicator (RSSI) from wireless access points in indoor environments can be employed for user localization. The accuracy of RSSI-based localization can be greatly improved from advanced knowledge of the propagation characteristics of an environment, via extensive measurements or computationally costly simulations. This paper introduces a machine learning approach, leveraging a convolutional neural network, aimed at producing high-resolution power maps of complex indoor environments through low-cost ray-tracing simulations. The produced power maps are integrated with a k-nearest neighbors (kNN) algorithm that performs user localization. The proposed approach is successfully demonstrated in a localization case study across the floor of an office building at the University of Toronto campus.","PeriodicalId":6801,"journal":{"name":"2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI)","volume":"2 1","pages":"659-660"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-Informed Convolutional Neural Network for Indoor Localization\",\"authors\":\"Farah Ashqar, Rakan Khoury, Caroline Wood, Yi-Hsuan Yeh, Aristeidis Seretis, C. Sarris\",\"doi\":\"10.1109/APS/URSI47566.2021.9704309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The received signal strength indicator (RSSI) from wireless access points in indoor environments can be employed for user localization. The accuracy of RSSI-based localization can be greatly improved from advanced knowledge of the propagation characteristics of an environment, via extensive measurements or computationally costly simulations. This paper introduces a machine learning approach, leveraging a convolutional neural network, aimed at producing high-resolution power maps of complex indoor environments through low-cost ray-tracing simulations. The produced power maps are integrated with a k-nearest neighbors (kNN) algorithm that performs user localization. The proposed approach is successfully demonstrated in a localization case study across the floor of an office building at the University of Toronto campus.\",\"PeriodicalId\":6801,\"journal\":{\"name\":\"2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI)\",\"volume\":\"2 1\",\"pages\":\"659-660\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS/URSI47566.2021.9704309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS/URSI47566.2021.9704309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从室内环境无线接入点接收到的信号强度指示器(RSSI)可用于用户定位。通过广泛的测量或计算成本高昂的模拟,可以通过对环境传播特性的先进知识大大提高基于rssi的定位的准确性。本文介绍了一种利用卷积神经网络的机器学习方法,旨在通过低成本的光线追踪模拟生成复杂室内环境的高分辨率功率图。生成的功率图与执行用户定位的k近邻(kNN)算法集成。所提出的方法在多伦多大学校园的办公楼楼层的本地化案例研究中得到了成功的演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics-Informed Convolutional Neural Network for Indoor Localization
The received signal strength indicator (RSSI) from wireless access points in indoor environments can be employed for user localization. The accuracy of RSSI-based localization can be greatly improved from advanced knowledge of the propagation characteristics of an environment, via extensive measurements or computationally costly simulations. This paper introduces a machine learning approach, leveraging a convolutional neural network, aimed at producing high-resolution power maps of complex indoor environments through low-cost ray-tracing simulations. The produced power maps are integrated with a k-nearest neighbors (kNN) algorithm that performs user localization. The proposed approach is successfully demonstrated in a localization case study across the floor of an office building at the University of Toronto campus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信