一种灵活的比例数据概率模型:单位半正态分布

Q4 Mathematics
H. Bakouch, A. S. Nik, A. Asgharzadeh, Hugo S. Salinas
{"title":"一种灵活的比例数据概率模型:单位半正态分布","authors":"H. Bakouch, A. S. Nik, A. Asgharzadeh, Hugo S. Salinas","doi":"10.1080/23737484.2021.1882355","DOIUrl":null,"url":null,"abstract":"Abstract A new class of unimodal asymmetric distributions is introduced to the unit interval and these distributions are useful for modeling data of percentages, proportions and fractions. Therefore, we propose the unit-half-normal distribution as a contribution to the earlier path and investigate some of its mathematical properties. The maximum likelihood estimator is obtained with a comprehensive inference. This new class of distributions belongs to the exponential family, hence the uniformly minimum variance unbiased estimator of the distribution parameter is obtained. The distribution represents a power alternative to the unit interval distributions, namely the beta, Kumaraswamy and other recent ones. We investigate a small simulation study to analyze the behavior of the obtained estimators for different sample sizes. Moreover, we illustrate the goodness of fit of the proposed model for image data. Lastly, we describe a procedure of incorporating covariates into regression analysis of the proposed distribution.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"51 1","pages":"271 - 288"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A flexible probability model for proportion data: Unit-half-normal distribution\",\"authors\":\"H. Bakouch, A. S. Nik, A. Asgharzadeh, Hugo S. Salinas\",\"doi\":\"10.1080/23737484.2021.1882355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A new class of unimodal asymmetric distributions is introduced to the unit interval and these distributions are useful for modeling data of percentages, proportions and fractions. Therefore, we propose the unit-half-normal distribution as a contribution to the earlier path and investigate some of its mathematical properties. The maximum likelihood estimator is obtained with a comprehensive inference. This new class of distributions belongs to the exponential family, hence the uniformly minimum variance unbiased estimator of the distribution parameter is obtained. The distribution represents a power alternative to the unit interval distributions, namely the beta, Kumaraswamy and other recent ones. We investigate a small simulation study to analyze the behavior of the obtained estimators for different sample sizes. Moreover, we illustrate the goodness of fit of the proposed model for image data. Lastly, we describe a procedure of incorporating covariates into regression analysis of the proposed distribution.\",\"PeriodicalId\":36561,\"journal\":{\"name\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"volume\":\"51 1\",\"pages\":\"271 - 288\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23737484.2021.1882355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2021.1882355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 13

摘要

在单位区间中引入了一类新的单峰不对称分布,这些分布可用于百分比、比例和分数数据的建模。因此,我们提出了单位半正态分布作为早期路径的贡献,并研究了它的一些数学性质。通过综合推理得到了极大似然估计量。这类分布属于指数族,因此得到了分布参数的一致最小方差无偏估计量。该分布代表了单位区间分布(即beta、Kumaraswamy和其他最近的分布)的一个有力替代。我们研究了一个小型的模拟研究,以分析得到的估计量在不同样本量下的行为。此外,我们还说明了该模型对图像数据的拟合良好性。最后,我们描述了将协变量纳入拟分布回归分析的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A flexible probability model for proportion data: Unit-half-normal distribution
Abstract A new class of unimodal asymmetric distributions is introduced to the unit interval and these distributions are useful for modeling data of percentages, proportions and fractions. Therefore, we propose the unit-half-normal distribution as a contribution to the earlier path and investigate some of its mathematical properties. The maximum likelihood estimator is obtained with a comprehensive inference. This new class of distributions belongs to the exponential family, hence the uniformly minimum variance unbiased estimator of the distribution parameter is obtained. The distribution represents a power alternative to the unit interval distributions, namely the beta, Kumaraswamy and other recent ones. We investigate a small simulation study to analyze the behavior of the obtained estimators for different sample sizes. Moreover, we illustrate the goodness of fit of the proposed model for image data. Lastly, we describe a procedure of incorporating covariates into regression analysis of the proposed distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信