阿贝尔群上的不变手段捕获了巴拿赫空间在其第二对偶中的互补性

Adam P. Goucher, Tomasz Kania
{"title":"阿贝尔群上的不变手段捕获了巴拿赫空间在其第二对偶中的互补性","authors":"Adam P. Goucher, Tomasz Kania","doi":"10.4064/SM200706-15-1","DOIUrl":null,"url":null,"abstract":"Let $X$ be a Banach space. Then $X$ is complemented in the bidual $X^{**}$ if and only if there exists an invariant mean $\\ell_\\infty(G, X)\\to X$ with respect to a free Abelian group $G$ of rank equal to the cardinality of $X^{**}$, and this happens if and only if there exists an invariant mean with respect to the additive group of $X^{**}$. This improves upon previous results due to Bustos Domecq =and the second-named author, where certain idempotent semigroups of cardinality equal to the cardinality of $X^{**}$ were considered, and answers a question of J.M.F. Castillo (private communication). En route to the proof of the main result, we endow the family of all finite-dimensional subspaces of an infinite-dimensional vector space with a structure of a free commutative monoid with the property that the product of two subspaces contains the respective subspaces, which is possibly of interest in itself.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Invariant means on Abelian groups capture complementability of Banach spaces in their second duals\",\"authors\":\"Adam P. Goucher, Tomasz Kania\",\"doi\":\"10.4064/SM200706-15-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a Banach space. Then $X$ is complemented in the bidual $X^{**}$ if and only if there exists an invariant mean $\\\\ell_\\\\infty(G, X)\\\\to X$ with respect to a free Abelian group $G$ of rank equal to the cardinality of $X^{**}$, and this happens if and only if there exists an invariant mean with respect to the additive group of $X^{**}$. This improves upon previous results due to Bustos Domecq =and the second-named author, where certain idempotent semigroups of cardinality equal to the cardinality of $X^{**}$ were considered, and answers a question of J.M.F. Castillo (private communication). En route to the proof of the main result, we endow the family of all finite-dimensional subspaces of an infinite-dimensional vector space with a structure of a free commutative monoid with the property that the product of two subspaces contains the respective subspaces, which is possibly of interest in itself.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/SM200706-15-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/SM200706-15-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设$X$为巴拿赫空间。当且仅当存在一个秩等于$X^{**}$的基数的自由阿贝尔群$G$的不变均值$\ell_\infty(G, X)\to X$时,$X$在二元$X^{**}$中是互补的,并且当且仅当存在一个关于$X^{**}$的加性群的不变均值时,这种情况才会发生。这改进了先前由于Bustos Domecq =和第二名作者的结果,其中考虑了基数等于$X^{**}$基数的某些幂等半群,并回答了J.M.F. Castillo(私人通信)的问题。在证明主要结果的过程中,我们赋予无限维向量空间的所有有限维子空间族一个自由交换单群的结构,其性质是两个子空间的乘积包含各自的子空间,这本身可能是有趣的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant means on Abelian groups capture complementability of Banach spaces in their second duals
Let $X$ be a Banach space. Then $X$ is complemented in the bidual $X^{**}$ if and only if there exists an invariant mean $\ell_\infty(G, X)\to X$ with respect to a free Abelian group $G$ of rank equal to the cardinality of $X^{**}$, and this happens if and only if there exists an invariant mean with respect to the additive group of $X^{**}$. This improves upon previous results due to Bustos Domecq =and the second-named author, where certain idempotent semigroups of cardinality equal to the cardinality of $X^{**}$ were considered, and answers a question of J.M.F. Castillo (private communication). En route to the proof of the main result, we endow the family of all finite-dimensional subspaces of an infinite-dimensional vector space with a structure of a free commutative monoid with the property that the product of two subspaces contains the respective subspaces, which is possibly of interest in itself.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信