具有异常扩散的广义二级流体中平板的脉冲运动

M. Hasan, M. Islam, Mir Shariful Islam
{"title":"具有异常扩散的广义二级流体中平板的脉冲运动","authors":"M. Hasan, M. Islam, Mir Shariful Islam","doi":"10.11648/J.AJAM.20200806.15","DOIUrl":null,"url":null,"abstract":"The flow adjacent to a wall rapidly set in motion for a generalized second-grade fluid with anomalous diffusion is examined. For the elucidation of such a fluid, the fractional-order derivative approach in the constitutive relationship model is presented because models based on ordinary differential equations have a relatively limited class of solutions, which does not provide compatible description of the complex systems in general. The current model of second-order fluid involving fractional calculus is based on the formal replacement of the first-order derivative in ordinary rheological constitutive equation by fractional derivative of a non-integer order. In addition, the time-fractional equation considered in this article describes the anomalous sub-diffusion. In this article, the velocity and stress field of generalized second-grade fluid with fractional anomalous diffusion are studied by fractional partial differential equations. Analytic solutions are given in closed form, from these differential equations in terms of the generalized G-functions or Fox's H-function with the discrete Laplace transform technique. Thus, many previous and classical results, namely, the solution of fractional diffusion equation obtained by Wyss, the classical Rayleigh’s time-space regularity solution, the relationship between velocity field and stress field obtained by Bagley and Torvik, are represented by particular cases of our proposed derivation.","PeriodicalId":91196,"journal":{"name":"American journal of applied mathematics and statistics","volume":"48 1","pages":"327"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impulsive Motion of Flat Plate in Generalized Second Grade Fluid with Anomalous Diffusion\",\"authors\":\"M. Hasan, M. Islam, Mir Shariful Islam\",\"doi\":\"10.11648/J.AJAM.20200806.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The flow adjacent to a wall rapidly set in motion for a generalized second-grade fluid with anomalous diffusion is examined. For the elucidation of such a fluid, the fractional-order derivative approach in the constitutive relationship model is presented because models based on ordinary differential equations have a relatively limited class of solutions, which does not provide compatible description of the complex systems in general. The current model of second-order fluid involving fractional calculus is based on the formal replacement of the first-order derivative in ordinary rheological constitutive equation by fractional derivative of a non-integer order. In addition, the time-fractional equation considered in this article describes the anomalous sub-diffusion. In this article, the velocity and stress field of generalized second-grade fluid with fractional anomalous diffusion are studied by fractional partial differential equations. Analytic solutions are given in closed form, from these differential equations in terms of the generalized G-functions or Fox's H-function with the discrete Laplace transform technique. Thus, many previous and classical results, namely, the solution of fractional diffusion equation obtained by Wyss, the classical Rayleigh’s time-space regularity solution, the relationship between velocity field and stress field obtained by Bagley and Torvik, are represented by particular cases of our proposed derivation.\",\"PeriodicalId\":91196,\"journal\":{\"name\":\"American journal of applied mathematics and statistics\",\"volume\":\"48 1\",\"pages\":\"327\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of applied mathematics and statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJAM.20200806.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of applied mathematics and statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJAM.20200806.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有异常扩散的广义二级流体快速启动的壁面附近流动。由于基于常微分方程的模型具有相对有限的一类解,不能提供一般复杂系统的相容描述,因此提出了本构关系模型中的分数阶导数方法来解释这种流体。目前二阶流体的分数阶微积分模型是以非整数阶分数阶导数代替普通流变本构方程中的一阶导数为基础的。此外,本文考虑的时间分数方程描述了异常子扩散。本文用分数阶偏微分方程研究了具有分数阶反常扩散的广义二级流体的速度场和应力场。用离散拉普拉斯变换技术,用广义g函数或Fox的h函数给出了这些微分方程的封闭解析解。因此,许多先前和经典的结果,即Wyss得到的分数阶扩散方程的解,经典的瑞利时空正则解,Bagley和Torvik得到的速度场和应力场的关系,都可以用我们所提出的推导的特殊情况来表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Impulsive Motion of Flat Plate in Generalized Second Grade Fluid with Anomalous Diffusion
The flow adjacent to a wall rapidly set in motion for a generalized second-grade fluid with anomalous diffusion is examined. For the elucidation of such a fluid, the fractional-order derivative approach in the constitutive relationship model is presented because models based on ordinary differential equations have a relatively limited class of solutions, which does not provide compatible description of the complex systems in general. The current model of second-order fluid involving fractional calculus is based on the formal replacement of the first-order derivative in ordinary rheological constitutive equation by fractional derivative of a non-integer order. In addition, the time-fractional equation considered in this article describes the anomalous sub-diffusion. In this article, the velocity and stress field of generalized second-grade fluid with fractional anomalous diffusion are studied by fractional partial differential equations. Analytic solutions are given in closed form, from these differential equations in terms of the generalized G-functions or Fox's H-function with the discrete Laplace transform technique. Thus, many previous and classical results, namely, the solution of fractional diffusion equation obtained by Wyss, the classical Rayleigh’s time-space regularity solution, the relationship between velocity field and stress field obtained by Bagley and Torvik, are represented by particular cases of our proposed derivation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信