{"title":"具有异常扩散的广义二级流体中平板的脉冲运动","authors":"M. Hasan, M. Islam, Mir Shariful Islam","doi":"10.11648/J.AJAM.20200806.15","DOIUrl":null,"url":null,"abstract":"The flow adjacent to a wall rapidly set in motion for a generalized second-grade fluid with anomalous diffusion is examined. For the elucidation of such a fluid, the fractional-order derivative approach in the constitutive relationship model is presented because models based on ordinary differential equations have a relatively limited class of solutions, which does not provide compatible description of the complex systems in general. The current model of second-order fluid involving fractional calculus is based on the formal replacement of the first-order derivative in ordinary rheological constitutive equation by fractional derivative of a non-integer order. In addition, the time-fractional equation considered in this article describes the anomalous sub-diffusion. In this article, the velocity and stress field of generalized second-grade fluid with fractional anomalous diffusion are studied by fractional partial differential equations. Analytic solutions are given in closed form, from these differential equations in terms of the generalized G-functions or Fox's H-function with the discrete Laplace transform technique. Thus, many previous and classical results, namely, the solution of fractional diffusion equation obtained by Wyss, the classical Rayleigh’s time-space regularity solution, the relationship between velocity field and stress field obtained by Bagley and Torvik, are represented by particular cases of our proposed derivation.","PeriodicalId":91196,"journal":{"name":"American journal of applied mathematics and statistics","volume":"48 1","pages":"327"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impulsive Motion of Flat Plate in Generalized Second Grade Fluid with Anomalous Diffusion\",\"authors\":\"M. Hasan, M. Islam, Mir Shariful Islam\",\"doi\":\"10.11648/J.AJAM.20200806.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The flow adjacent to a wall rapidly set in motion for a generalized second-grade fluid with anomalous diffusion is examined. For the elucidation of such a fluid, the fractional-order derivative approach in the constitutive relationship model is presented because models based on ordinary differential equations have a relatively limited class of solutions, which does not provide compatible description of the complex systems in general. The current model of second-order fluid involving fractional calculus is based on the formal replacement of the first-order derivative in ordinary rheological constitutive equation by fractional derivative of a non-integer order. In addition, the time-fractional equation considered in this article describes the anomalous sub-diffusion. In this article, the velocity and stress field of generalized second-grade fluid with fractional anomalous diffusion are studied by fractional partial differential equations. Analytic solutions are given in closed form, from these differential equations in terms of the generalized G-functions or Fox's H-function with the discrete Laplace transform technique. Thus, many previous and classical results, namely, the solution of fractional diffusion equation obtained by Wyss, the classical Rayleigh’s time-space regularity solution, the relationship between velocity field and stress field obtained by Bagley and Torvik, are represented by particular cases of our proposed derivation.\",\"PeriodicalId\":91196,\"journal\":{\"name\":\"American journal of applied mathematics and statistics\",\"volume\":\"48 1\",\"pages\":\"327\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of applied mathematics and statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJAM.20200806.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of applied mathematics and statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJAM.20200806.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Impulsive Motion of Flat Plate in Generalized Second Grade Fluid with Anomalous Diffusion
The flow adjacent to a wall rapidly set in motion for a generalized second-grade fluid with anomalous diffusion is examined. For the elucidation of such a fluid, the fractional-order derivative approach in the constitutive relationship model is presented because models based on ordinary differential equations have a relatively limited class of solutions, which does not provide compatible description of the complex systems in general. The current model of second-order fluid involving fractional calculus is based on the formal replacement of the first-order derivative in ordinary rheological constitutive equation by fractional derivative of a non-integer order. In addition, the time-fractional equation considered in this article describes the anomalous sub-diffusion. In this article, the velocity and stress field of generalized second-grade fluid with fractional anomalous diffusion are studied by fractional partial differential equations. Analytic solutions are given in closed form, from these differential equations in terms of the generalized G-functions or Fox's H-function with the discrete Laplace transform technique. Thus, many previous and classical results, namely, the solution of fractional diffusion equation obtained by Wyss, the classical Rayleigh’s time-space regularity solution, the relationship between velocity field and stress field obtained by Bagley and Torvik, are represented by particular cases of our proposed derivation.