有限数据字上C²解释的一个注记

Time Pub Date : 2020-01-01 DOI:10.4230/LIPIcs.TIME.2020.17
Bartosz Bednarczyk, Piotr Witkowski
{"title":"有限数据字上C²解释的一个注记","authors":"Bartosz Bednarczyk, Piotr Witkowski","doi":"10.4230/LIPIcs.TIME.2020.17","DOIUrl":null,"url":null,"abstract":"We consider the satisfiability problem for the two-variable fragment of first-order logic extended with counting quantifiers, interpreted over finite words with data, denoted here with C2[≤, succ,∼, πbin ]. In our scenario, we allow for using arbitrary many uninterpreted binary predicates from πbin, two navigational predicates ≤ and succ over word positions as well as a data-equality predicate ∼. We prove that the obtained logic is undecidable, which contrasts with the decidability of the logic without counting by Montanari, Pazzaglia and Sala [27]. We supplement our results with decidability for several sub-fragments of C2[≤, succ,∼, πbin], e.g. without binary predicates, without successor succ, or under the assumption that the total number of positions carrying the same data value in a data-word is bounded by an a priori given constant. 2012 ACM Subject Classification Theory of computation → Logic and verification","PeriodicalId":75226,"journal":{"name":"Time","volume":"27 1","pages":"17:1-17:14"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Note on C² Interpreted over Finite Data-Words\",\"authors\":\"Bartosz Bednarczyk, Piotr Witkowski\",\"doi\":\"10.4230/LIPIcs.TIME.2020.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the satisfiability problem for the two-variable fragment of first-order logic extended with counting quantifiers, interpreted over finite words with data, denoted here with C2[≤, succ,∼, πbin ]. In our scenario, we allow for using arbitrary many uninterpreted binary predicates from πbin, two navigational predicates ≤ and succ over word positions as well as a data-equality predicate ∼. We prove that the obtained logic is undecidable, which contrasts with the decidability of the logic without counting by Montanari, Pazzaglia and Sala [27]. We supplement our results with decidability for several sub-fragments of C2[≤, succ,∼, πbin], e.g. without binary predicates, without successor succ, or under the assumption that the total number of positions carrying the same data value in a data-word is bounded by an a priori given constant. 2012 ACM Subject Classification Theory of computation → Logic and verification\",\"PeriodicalId\":75226,\"journal\":{\"name\":\"Time\",\"volume\":\"27 1\",\"pages\":\"17:1-17:14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Time\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.TIME.2020.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TIME.2020.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑了一阶逻辑扩展计数量词的双变量片段的可满足性问题,它解释在有限的有数据的词上,这里用C2[≤,suc, ~, πbin]表示。在我们的场景中,我们允许使用任意多个来自πbin的未解释二进制谓词,两个导航谓词≤和succ在单词位置上,以及一个数据相等谓词~。我们证明了所得到的逻辑是不可判定的,这与Montanari, Pazzaglia和Sala bbb的不计数逻辑的可判定性形成了对比。我们用C2[≤,suc, ~, πbin]的几个子片段的可判定性补充了我们的结果,例如,在没有二元谓词的情况下,在没有后继suc的情况下,或者在一个数据字中携带相同数据值的位置总数由一个先验给定常数限定的假设下。2012 ACM学科分类:计算理论→逻辑和验证
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on C² Interpreted over Finite Data-Words
We consider the satisfiability problem for the two-variable fragment of first-order logic extended with counting quantifiers, interpreted over finite words with data, denoted here with C2[≤, succ,∼, πbin ]. In our scenario, we allow for using arbitrary many uninterpreted binary predicates from πbin, two navigational predicates ≤ and succ over word positions as well as a data-equality predicate ∼. We prove that the obtained logic is undecidable, which contrasts with the decidability of the logic without counting by Montanari, Pazzaglia and Sala [27]. We supplement our results with decidability for several sub-fragments of C2[≤, succ,∼, πbin], e.g. without binary predicates, without successor succ, or under the assumption that the total number of positions carrying the same data value in a data-word is bounded by an a priori given constant. 2012 ACM Subject Classification Theory of computation → Logic and verification
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信