Omegaflow

Yaoyang Zhou, Zihao Yu, Chuanqi Zhang, Yinan Xu, Huizhe Wang, Sa Wang, Ninghui Sun, Yungang Bao
{"title":"Omegaflow","authors":"Yaoyang Zhou, Zihao Yu, Chuanqi Zhang, Yinan Xu, Huizhe Wang, Sa Wang, Ninghui Sun, Yungang Bao","doi":"10.1145/3447818.3460367","DOIUrl":null,"url":null,"abstract":"This paper investigates how to better track and deliver dependency in dependency-based cores to exploit instruction-level parallelism (ILP) as much as possible. To this end, we first propose an analytical performance model for the state-of-art dependency-based core, Forwardflow, and figure out two vital factors affecting its upper bound of performance. Then we propose Omegaflow,a dependency-based architecture adopting three new techniques, which respond to the discovered factors. Experimental results show that Omegaflow improves IPC by 24.6% compared to the state-of-the-art design, approaching the performance of the OoO architecture with an ideal scheduler (94.4%) without increasing the clock cycle and consumes only 8.82% more energy than Forwardflow.","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Omegaflow\",\"authors\":\"Yaoyang Zhou, Zihao Yu, Chuanqi Zhang, Yinan Xu, Huizhe Wang, Sa Wang, Ninghui Sun, Yungang Bao\",\"doi\":\"10.1145/3447818.3460367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates how to better track and deliver dependency in dependency-based cores to exploit instruction-level parallelism (ILP) as much as possible. To this end, we first propose an analytical performance model for the state-of-art dependency-based core, Forwardflow, and figure out two vital factors affecting its upper bound of performance. Then we propose Omegaflow,a dependency-based architecture adopting three new techniques, which respond to the discovered factors. Experimental results show that Omegaflow improves IPC by 24.6% compared to the state-of-the-art design, approaching the performance of the OoO architecture with an ideal scheduler (94.4%) without increasing the clock cycle and consumes only 8.82% more energy than Forwardflow.\",\"PeriodicalId\":73273,\"journal\":{\"name\":\"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3447818.3460367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447818.3460367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Omegaflow
This paper investigates how to better track and deliver dependency in dependency-based cores to exploit instruction-level parallelism (ILP) as much as possible. To this end, we first propose an analytical performance model for the state-of-art dependency-based core, Forwardflow, and figure out two vital factors affecting its upper bound of performance. Then we propose Omegaflow,a dependency-based architecture adopting three new techniques, which respond to the discovered factors. Experimental results show that Omegaflow improves IPC by 24.6% compared to the state-of-the-art design, approaching the performance of the OoO architecture with an ideal scheduler (94.4%) without increasing the clock cycle and consumes only 8.82% more energy than Forwardflow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信