非线性Baskakov-Durrmeyer算子的一些收敛性结果

IF 1 Q1 MATHEMATICS
H. Altin
{"title":"非线性Baskakov-Durrmeyer算子的一些收敛性结果","authors":"H. Altin","doi":"10.15330/cmp.15.1.95-103","DOIUrl":null,"url":null,"abstract":"This paper is an introduction to a sequence of nonlinear Baskakov-Durrmeyer operators $(NBD_{n})$ of the form \\[ (NBD_{n})(f;x) =\\int_{0}^\\infty K_{n}(x,t,f(t))\\,dt \\] with $x\\in [0,\\infty)$ and $n\\in\\mathbb{N}$. While $K_{n}(x,t,u)$ provide convenient assumptions, these operators work on bounded functions, which are defined on all finite subintervals of $[0,\\infty)$. This paper comprise some pointwise convergence results for these operators in certain functional spaces. As well as this study can be seen as a continuation of studies about nonlinear operators, it is the first study on nonlinear Baskakov-Durrmeyer or modified Baskakov operators, while there were more papers on linear part of the operators.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some convergence results for nonlinear Baskakov-Durrmeyer operators\",\"authors\":\"H. Altin\",\"doi\":\"10.15330/cmp.15.1.95-103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is an introduction to a sequence of nonlinear Baskakov-Durrmeyer operators $(NBD_{n})$ of the form \\\\[ (NBD_{n})(f;x) =\\\\int_{0}^\\\\infty K_{n}(x,t,f(t))\\\\,dt \\\\] with $x\\\\in [0,\\\\infty)$ and $n\\\\in\\\\mathbb{N}$. While $K_{n}(x,t,u)$ provide convenient assumptions, these operators work on bounded functions, which are defined on all finite subintervals of $[0,\\\\infty)$. This paper comprise some pointwise convergence results for these operators in certain functional spaces. As well as this study can be seen as a continuation of studies about nonlinear operators, it is the first study on nonlinear Baskakov-Durrmeyer or modified Baskakov operators, while there were more papers on linear part of the operators.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.15.1.95-103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.1.95-103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一类非线性Baskakov-Durrmeyer算子序列 $(NBD_{n})$ 形式的 \[ (NBD_{n})(f;x) =\int_{0}^\infty K_{n}(x,t,f(t))\,dt \] 有 $x\in [0,\infty)$ 和 $n\in\mathbb{N}$. 而 $K_{n}(x,t,u)$ 提供方便的假设,这些运算符作用于有界函数,这些函数定义在的所有有限子区间上 $[0,\infty)$. 本文给出了这些算子在一定泛函空间中的一些逐点收敛结果。本研究可以看作是对非线性算子研究的延续,这是对非线性Baskakov- durrmeyer或修正Baskakov算子的首次研究,而对算子线性部分的研究较多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some convergence results for nonlinear Baskakov-Durrmeyer operators
This paper is an introduction to a sequence of nonlinear Baskakov-Durrmeyer operators $(NBD_{n})$ of the form \[ (NBD_{n})(f;x) =\int_{0}^\infty K_{n}(x,t,f(t))\,dt \] with $x\in [0,\infty)$ and $n\in\mathbb{N}$. While $K_{n}(x,t,u)$ provide convenient assumptions, these operators work on bounded functions, which are defined on all finite subintervals of $[0,\infty)$. This paper comprise some pointwise convergence results for these operators in certain functional spaces. As well as this study can be seen as a continuation of studies about nonlinear operators, it is the first study on nonlinear Baskakov-Durrmeyer or modified Baskakov operators, while there were more papers on linear part of the operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信