时间分数次扩散问题近似的后验误差分析

L. Banjai, C. Makridakis
{"title":"时间分数次扩散问题近似的后验误差分析","authors":"L. Banjai, C. Makridakis","doi":"10.1090/mcom/3723","DOIUrl":null,"url":null,"abstract":"In this paper we consider a sub-diffusion problem where the fractional time derivative is approximated either by the L1 scheme or by Convolution Quadrature. We propose new interpretations of the numerical schemes which lead to a posteriori error estimates. Our approach is based on appropriate pointwise representations of the numerical schemes as perturbed evolution equations and on stability estimates for the evolution equation. A posteriori error estimates in $L^2(H)$ and $L^\\infty (H)$ norms of optimal order are derived. Extensive numerical experiments indicate the reliability and the optimality of the estimators for the schemes considered, as well as their efficiency as error indicators driving adaptive mesh selection locating singularities of the problem.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"5 1","pages":"1711-1737"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A posteriori error analysis for approximations of time-fractional subdiffusion problems\",\"authors\":\"L. Banjai, C. Makridakis\",\"doi\":\"10.1090/mcom/3723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider a sub-diffusion problem where the fractional time derivative is approximated either by the L1 scheme or by Convolution Quadrature. We propose new interpretations of the numerical schemes which lead to a posteriori error estimates. Our approach is based on appropriate pointwise representations of the numerical schemes as perturbed evolution equations and on stability estimates for the evolution equation. A posteriori error estimates in $L^2(H)$ and $L^\\\\infty (H)$ norms of optimal order are derived. Extensive numerical experiments indicate the reliability and the optimality of the estimators for the schemes considered, as well as their efficiency as error indicators driving adaptive mesh selection locating singularities of the problem.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"5 1\",\"pages\":\"1711-1737\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究一类次扩散问题,其中分数阶时间导数可用L1格式或卷积正交逼近。我们提出了导致后验误差估计的数值格式的新解释。我们的方法是基于数值格式作为扰动演化方程的适当的点向表示和演化方程的稳定性估计。推导了$L^2(H)$和$L^\infty (H)$最优阶范数的后验误差估计。大量的数值实验表明了所考虑的估计器的可靠性和最优性,以及它们作为误差指标驱动自适应网格选择定位问题的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A posteriori error analysis for approximations of time-fractional subdiffusion problems
In this paper we consider a sub-diffusion problem where the fractional time derivative is approximated either by the L1 scheme or by Convolution Quadrature. We propose new interpretations of the numerical schemes which lead to a posteriori error estimates. Our approach is based on appropriate pointwise representations of the numerical schemes as perturbed evolution equations and on stability estimates for the evolution equation. A posteriori error estimates in $L^2(H)$ and $L^\infty (H)$ norms of optimal order are derived. Extensive numerical experiments indicate the reliability and the optimality of the estimators for the schemes considered, as well as their efficiency as error indicators driving adaptive mesh selection locating singularities of the problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信