{"title":"新型半金属钙钛矿NbScO3用于自旋电子传感","authors":"A. Ramanathan","doi":"10.3390/csac2021-10628","DOIUrl":null,"url":null,"abstract":"Half-metallic ferromagnetic (HMF) materials demonstrate 100% spin polarization at the Fermi level, making them promising candidates for spintronic sensing applications. In this work, the full potential linearized augmented plane wave (FP-LAPW) density functional theory (DFT) method is used to calculate the electro-magnetic properties of the transition metal perovskite NbScO3 using the generalized gradient approximation (GGA) and the modified Becke-Johnson (mBJ) approximation for the exchange correlations. The electronic band structures for the two spin orientations using GGA, predict NbScO3 to be an HMF with an integer magnetic moment of 2.0 μB and hence a promising candidate for spintronics. The new half metal perovskite shows metallic behavior in the majority spin and semiconducting in the minority spin channel with a direct Γ−Γ band gap of 1.870 eV. The integer magnetic moment of 2.0 μB is also preserved with mBJ exchange potential. The band structure, however, shows indirect gaps R−Γ and X−Γ of 2.023 eV and 0.780 eV in the minority and majority channels, respectively indicating NbScO3 to be a magnetic semiconductor. The results indicate the suitability of NbScO3 for spintronics as the necessary conditions are satisfied.","PeriodicalId":9815,"journal":{"name":"Chemistry Proceedings","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New Half Metal Perovskite NbScO3 for Spintronic Sensing Applications\",\"authors\":\"A. Ramanathan\",\"doi\":\"10.3390/csac2021-10628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Half-metallic ferromagnetic (HMF) materials demonstrate 100% spin polarization at the Fermi level, making them promising candidates for spintronic sensing applications. In this work, the full potential linearized augmented plane wave (FP-LAPW) density functional theory (DFT) method is used to calculate the electro-magnetic properties of the transition metal perovskite NbScO3 using the generalized gradient approximation (GGA) and the modified Becke-Johnson (mBJ) approximation for the exchange correlations. The electronic band structures for the two spin orientations using GGA, predict NbScO3 to be an HMF with an integer magnetic moment of 2.0 μB and hence a promising candidate for spintronics. The new half metal perovskite shows metallic behavior in the majority spin and semiconducting in the minority spin channel with a direct Γ−Γ band gap of 1.870 eV. The integer magnetic moment of 2.0 μB is also preserved with mBJ exchange potential. The band structure, however, shows indirect gaps R−Γ and X−Γ of 2.023 eV and 0.780 eV in the minority and majority channels, respectively indicating NbScO3 to be a magnetic semiconductor. The results indicate the suitability of NbScO3 for spintronics as the necessary conditions are satisfied.\",\"PeriodicalId\":9815,\"journal\":{\"name\":\"Chemistry Proceedings\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/csac2021-10628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/csac2021-10628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Half Metal Perovskite NbScO3 for Spintronic Sensing Applications
Half-metallic ferromagnetic (HMF) materials demonstrate 100% spin polarization at the Fermi level, making them promising candidates for spintronic sensing applications. In this work, the full potential linearized augmented plane wave (FP-LAPW) density functional theory (DFT) method is used to calculate the electro-magnetic properties of the transition metal perovskite NbScO3 using the generalized gradient approximation (GGA) and the modified Becke-Johnson (mBJ) approximation for the exchange correlations. The electronic band structures for the two spin orientations using GGA, predict NbScO3 to be an HMF with an integer magnetic moment of 2.0 μB and hence a promising candidate for spintronics. The new half metal perovskite shows metallic behavior in the majority spin and semiconducting in the minority spin channel with a direct Γ−Γ band gap of 1.870 eV. The integer magnetic moment of 2.0 μB is also preserved with mBJ exchange potential. The band structure, however, shows indirect gaps R−Γ and X−Γ of 2.023 eV and 0.780 eV in the minority and majority channels, respectively indicating NbScO3 to be a magnetic semiconductor. The results indicate the suitability of NbScO3 for spintronics as the necessary conditions are satisfied.