关于(log n)mod 1的分布的注释

A. Berger
{"title":"关于(log n)mod 1的分布的注释","authors":"A. Berger","doi":"10.2478/udt-2022-0013","DOIUrl":null,"url":null,"abstract":"Abstract For sequences sufficiently close to (a log n), with an arbitrary real constant a, this note describes the precise asymptotics of the associated empirical distributions modulo one, with respect to the Kantorovich metric as well as a discrepancy-style metric. In particular, the note demonstrates how these asymptotics depend on a in a delicate, discontinuous way. The results strengthen and complement known facts in the literature.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"30 1","pages":"77 - 100"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Note on the Distributions of (log n)mod 1\",\"authors\":\"A. Berger\",\"doi\":\"10.2478/udt-2022-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For sequences sufficiently close to (a log n), with an arbitrary real constant a, this note describes the precise asymptotics of the associated empirical distributions modulo one, with respect to the Kantorovich metric as well as a discrepancy-style metric. In particular, the note demonstrates how these asymptotics depend on a in a delicate, discontinuous way. The results strengthen and complement known facts in the literature.\",\"PeriodicalId\":23390,\"journal\":{\"name\":\"Uniform distribution theory\",\"volume\":\"30 1\",\"pages\":\"77 - 100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniform distribution theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/udt-2022-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2022-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要对于足够接近(a log n)的序列,具有任意实常数a,本文描述了相关经验分布模1的精确渐近性,关于Kantorovich度规和一个差值型度规。特别地,注释说明了这些渐近是如何以一种微妙的、不连续的方式依赖于a的。研究结果加强并补充了文献中已知的事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on the Distributions of (log n)mod 1
Abstract For sequences sufficiently close to (a log n), with an arbitrary real constant a, this note describes the precise asymptotics of the associated empirical distributions modulo one, with respect to the Kantorovich metric as well as a discrepancy-style metric. In particular, the note demonstrates how these asymptotics depend on a in a delicate, discontinuous way. The results strengthen and complement known facts in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信