{"title":"组合迭代、Cauchy、翻译和Sincov包含","authors":"W. Fechner, Á. Száz","doi":"10.2478/ausm-2020-0004","DOIUrl":null,"url":null,"abstract":"Abstract Improving and extending some ideas of Gottlob Frege from 1874 (on a generalization of the notion of the composition iterates of a function), we consider the composition iterates ϕn of a relation ϕ on X, defined by ϕ0=Δx, ϕn=ϕ∘ϕn-1 if n∈, and ϕ∞=∪n=0∞ϕn. {\\varphi ^0} = {\\Delta _x},\\,\\,{\\varphi ^n} = \\varphi \\circ {\\varphi ^{n - 1}}{\\rm{ if n}} \\in \\mathbb{N,}\\,\\,{\\rm{and }}\\,\\,{\\varphi ^\\infty } = \\bigcup\\limits_{n = 0}^\\infty {{\\varphi ^n}} . In particular, by using the relational inclusion ϕn◦ϕm ⊆ ϕn+m with n, m ∈ ¯0 \\mathbb{\\bar {N}_0}} , we show that the function α, defined by α(n)=ϕn for n∈¯0, \\alpha \\left( n \\right) = {\\varphi ^{\\rm{n}}}\\,\\,\\,{\\rm{for n}} \\in {{\\rm\\mathbb{\\bar N}}_{\\rm{0}}}, satisfies the Cauchy problem α(n)∘α(m)⊆α(n+m), α(0)=Δx. \\alpha \\left( n \\right) \\circ \\alpha \\left( {\\rm{m}} \\right) \\subseteq \\alpha \\left( {{\\rm{n}} + {\\rm{m}}} \\right),\\,\\,\\,\\alpha \\left( 0 \\right) = {\\Delta _{\\rm{x}}}. Moreover, the function f, defined by f(n,A)=α(n)[ A ] for n∈¯0 and A⊆X, {\\rm{f}}\\left( {{\\rm{n}},{\\rm{A}}} \\right) = \\alpha \\left( {\\rm{n}} \\right)\\left[ {\\rm{A}} \\right]\\,\\,\\,{\\rm{for}}\\,{\\rm{n}} \\in {{\\rm\\mathbb{\\bar {N}}}_{\\rm{0}}}\\,\\,{\\rm{and}}\\,{\\rm{A}} \\subseteq {\\rm{X,}} satisfies the translation problem f(n,f(m,A))⊆f(n+m,A), f(0,A)=A. {\\rm{f}}\\left( {{\\rm{n}},f(m,{\\rm{A)}}} \\right) \\subseteq {\\rm{f}}\\left( {{\\rm{n}} + {\\rm{m,A}}} \\right),\\,\\,\\,{\\rm{f}}\\left( {0,{\\rm{A}}} \\right) = {\\rm{A}}{\\rm{.}} Furthermore, the function F, defined by F(A,B)={ n∈¯0: A⊆f(n,B) } for A,B⊆X, {\\rm{F}}\\left( {{\\rm{A}},{\\rm{B}}} \\right) = \\left\\{ {{\\rm{n}} \\in {{{\\rm\\mathbb{\\bar {N}}}}_{\\rm{0}}}:\\,\\,{\\rm{A}} \\subseteq {\\rm{f}}\\left( {{\\rm{n}},{\\rm{B}}} \\right)} \\right\\}\\,\\,{\\rm{for}}\\,\\,{\\rm{A,B}} \\subseteq {\\rm{X,}} satisfies the Sincov problem F(A,B)+F(B,C)⊆F(A,C), 0∈F(A,A). {\\rm{F}}\\left( {{\\rm{A}},{\\rm{B}}} \\right) + {\\rm{F}}\\left( {{\\rm{B}},{\\rm{C}}} \\right) \\subseteq {\\rm{F}}\\left( {{\\rm{A,C}}} \\right),\\,\\,\\,\\,0 \\in {\\rm{F}}\\left( {{\\rm{A}},{\\rm{A}}} \\right). Motivated by the above observations, we investigate a function F on the product set X2 to the power groupoid 𝒫(U) of an additively written groupoid U which is supertriangular in the sense that F(x,y)+F(y,z)⊆F(x,z) {\\rm{F}}\\left( {{\\rm{x}},{\\rm{y}}} \\right) + {\\rm{F}}\\left( {{\\rm{y}},{\\rm{z}}} \\right) \\subseteq {\\rm{F}}\\left( {{\\rm{x}},{\\rm{z}}} \\right) for all x, y, z ∈ X. For this, we introduce the convenient notations R(x,y)=F(y,x) and S(x,y)=F(x,y)+R(x,y), {\\rm{R}}\\left( {{\\rm{x}},{\\rm{y}}} \\right) = {\\rm{F}}\\left( {{\\rm{y}},{\\rm{x}}} \\right)\\,\\,\\,{\\rm{and}}\\,\\,{\\rm{S}}\\left( {{\\rm{x}},{\\rm{y}}} \\right) = {\\rm{F}}\\left( {{\\rm{x}},{\\rm{y}}} \\right) + {\\rm{R}}\\left( {{\\rm{x}},{\\rm{y}}} \\right), and Φ(x)=F(x,x) and Ψ(x)∪y∈XS(x,y). \\Phi \\left( {\\rm{x}} \\right) = {\\rm{F}}\\left( {{\\rm{x}},{\\rm{x}}} \\right)\\,\\,{\\rm{and}}\\,\\,\\Psi \\left( {\\rm{x}} \\right)\\bigcup\\limits_{{\\rm{y}} \\in {\\rm{X}}} {{\\rm{S}}\\left( {{\\rm{x}},{\\rm{y}}} \\right).} Moreover, we gradually assume that U and F have some useful additional properties. For instance, U has a zero, U is a group, U is commutative, U is cancellative, or U has a suitable distance function; while F is nonpartial, F is symmetric, skew symmetric, or single-valued.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composition iterates, Cauchy, translation, and Sincov inclusions\",\"authors\":\"W. Fechner, Á. Száz\",\"doi\":\"10.2478/ausm-2020-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Improving and extending some ideas of Gottlob Frege from 1874 (on a generalization of the notion of the composition iterates of a function), we consider the composition iterates ϕn of a relation ϕ on X, defined by ϕ0=Δx, ϕn=ϕ∘ϕn-1 if n∈, and ϕ∞=∪n=0∞ϕn. {\\\\varphi ^0} = {\\\\Delta _x},\\\\,\\\\,{\\\\varphi ^n} = \\\\varphi \\\\circ {\\\\varphi ^{n - 1}}{\\\\rm{ if n}} \\\\in \\\\mathbb{N,}\\\\,\\\\,{\\\\rm{and }}\\\\,\\\\,{\\\\varphi ^\\\\infty } = \\\\bigcup\\\\limits_{n = 0}^\\\\infty {{\\\\varphi ^n}} . In particular, by using the relational inclusion ϕn◦ϕm ⊆ ϕn+m with n, m ∈ ¯0 \\\\mathbb{\\\\bar {N}_0}} , we show that the function α, defined by α(n)=ϕn for n∈¯0, \\\\alpha \\\\left( n \\\\right) = {\\\\varphi ^{\\\\rm{n}}}\\\\,\\\\,\\\\,{\\\\rm{for n}} \\\\in {{\\\\rm\\\\mathbb{\\\\bar N}}_{\\\\rm{0}}}, satisfies the Cauchy problem α(n)∘α(m)⊆α(n+m), α(0)=Δx. \\\\alpha \\\\left( n \\\\right) \\\\circ \\\\alpha \\\\left( {\\\\rm{m}} \\\\right) \\\\subseteq \\\\alpha \\\\left( {{\\\\rm{n}} + {\\\\rm{m}}} \\\\right),\\\\,\\\\,\\\\,\\\\alpha \\\\left( 0 \\\\right) = {\\\\Delta _{\\\\rm{x}}}. Moreover, the function f, defined by f(n,A)=α(n)[ A ] for n∈¯0 and A⊆X, {\\\\rm{f}}\\\\left( {{\\\\rm{n}},{\\\\rm{A}}} \\\\right) = \\\\alpha \\\\left( {\\\\rm{n}} \\\\right)\\\\left[ {\\\\rm{A}} \\\\right]\\\\,\\\\,\\\\,{\\\\rm{for}}\\\\,{\\\\rm{n}} \\\\in {{\\\\rm\\\\mathbb{\\\\bar {N}}}_{\\\\rm{0}}}\\\\,\\\\,{\\\\rm{and}}\\\\,{\\\\rm{A}} \\\\subseteq {\\\\rm{X,}} satisfies the translation problem f(n,f(m,A))⊆f(n+m,A), f(0,A)=A. {\\\\rm{f}}\\\\left( {{\\\\rm{n}},f(m,{\\\\rm{A)}}} \\\\right) \\\\subseteq {\\\\rm{f}}\\\\left( {{\\\\rm{n}} + {\\\\rm{m,A}}} \\\\right),\\\\,\\\\,\\\\,{\\\\rm{f}}\\\\left( {0,{\\\\rm{A}}} \\\\right) = {\\\\rm{A}}{\\\\rm{.}} Furthermore, the function F, defined by F(A,B)={ n∈¯0: A⊆f(n,B) } for A,B⊆X, {\\\\rm{F}}\\\\left( {{\\\\rm{A}},{\\\\rm{B}}} \\\\right) = \\\\left\\\\{ {{\\\\rm{n}} \\\\in {{{\\\\rm\\\\mathbb{\\\\bar {N}}}}_{\\\\rm{0}}}:\\\\,\\\\,{\\\\rm{A}} \\\\subseteq {\\\\rm{f}}\\\\left( {{\\\\rm{n}},{\\\\rm{B}}} \\\\right)} \\\\right\\\\}\\\\,\\\\,{\\\\rm{for}}\\\\,\\\\,{\\\\rm{A,B}} \\\\subseteq {\\\\rm{X,}} satisfies the Sincov problem F(A,B)+F(B,C)⊆F(A,C), 0∈F(A,A). {\\\\rm{F}}\\\\left( {{\\\\rm{A}},{\\\\rm{B}}} \\\\right) + {\\\\rm{F}}\\\\left( {{\\\\rm{B}},{\\\\rm{C}}} \\\\right) \\\\subseteq {\\\\rm{F}}\\\\left( {{\\\\rm{A,C}}} \\\\right),\\\\,\\\\,\\\\,\\\\,0 \\\\in {\\\\rm{F}}\\\\left( {{\\\\rm{A}},{\\\\rm{A}}} \\\\right). Motivated by the above observations, we investigate a function F on the product set X2 to the power groupoid 𝒫(U) of an additively written groupoid U which is supertriangular in the sense that F(x,y)+F(y,z)⊆F(x,z) {\\\\rm{F}}\\\\left( {{\\\\rm{x}},{\\\\rm{y}}} \\\\right) + {\\\\rm{F}}\\\\left( {{\\\\rm{y}},{\\\\rm{z}}} \\\\right) \\\\subseteq {\\\\rm{F}}\\\\left( {{\\\\rm{x}},{\\\\rm{z}}} \\\\right) for all x, y, z ∈ X. For this, we introduce the convenient notations R(x,y)=F(y,x) and S(x,y)=F(x,y)+R(x,y), {\\\\rm{R}}\\\\left( {{\\\\rm{x}},{\\\\rm{y}}} \\\\right) = {\\\\rm{F}}\\\\left( {{\\\\rm{y}},{\\\\rm{x}}} \\\\right)\\\\,\\\\,\\\\,{\\\\rm{and}}\\\\,\\\\,{\\\\rm{S}}\\\\left( {{\\\\rm{x}},{\\\\rm{y}}} \\\\right) = {\\\\rm{F}}\\\\left( {{\\\\rm{x}},{\\\\rm{y}}} \\\\right) + {\\\\rm{R}}\\\\left( {{\\\\rm{x}},{\\\\rm{y}}} \\\\right), and Φ(x)=F(x,x) and Ψ(x)∪y∈XS(x,y). \\\\Phi \\\\left( {\\\\rm{x}} \\\\right) = {\\\\rm{F}}\\\\left( {{\\\\rm{x}},{\\\\rm{x}}} \\\\right)\\\\,\\\\,{\\\\rm{and}}\\\\,\\\\,\\\\Psi \\\\left( {\\\\rm{x}} \\\\right)\\\\bigcup\\\\limits_{{\\\\rm{y}} \\\\in {\\\\rm{X}}} {{\\\\rm{S}}\\\\left( {{\\\\rm{x}},{\\\\rm{y}}} \\\\right).} Moreover, we gradually assume that U and F have some useful additional properties. For instance, U has a zero, U is a group, U is commutative, U is cancellative, or U has a suitable distance function; while F is nonpartial, F is symmetric, skew symmetric, or single-valued.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2020-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2020-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Composition iterates, Cauchy, translation, and Sincov inclusions
Abstract Improving and extending some ideas of Gottlob Frege from 1874 (on a generalization of the notion of the composition iterates of a function), we consider the composition iterates ϕn of a relation ϕ on X, defined by ϕ0=Δx, ϕn=ϕ∘ϕn-1 if n∈, and ϕ∞=∪n=0∞ϕn. {\varphi ^0} = {\Delta _x},\,\,{\varphi ^n} = \varphi \circ {\varphi ^{n - 1}}{\rm{ if n}} \in \mathbb{N,}\,\,{\rm{and }}\,\,{\varphi ^\infty } = \bigcup\limits_{n = 0}^\infty {{\varphi ^n}} . In particular, by using the relational inclusion ϕn◦ϕm ⊆ ϕn+m with n, m ∈ ¯0 \mathbb{\bar {N}_0}} , we show that the function α, defined by α(n)=ϕn for n∈¯0, \alpha \left( n \right) = {\varphi ^{\rm{n}}}\,\,\,{\rm{for n}} \in {{\rm\mathbb{\bar N}}_{\rm{0}}}, satisfies the Cauchy problem α(n)∘α(m)⊆α(n+m), α(0)=Δx. \alpha \left( n \right) \circ \alpha \left( {\rm{m}} \right) \subseteq \alpha \left( {{\rm{n}} + {\rm{m}}} \right),\,\,\,\alpha \left( 0 \right) = {\Delta _{\rm{x}}}. Moreover, the function f, defined by f(n,A)=α(n)[ A ] for n∈¯0 and A⊆X, {\rm{f}}\left( {{\rm{n}},{\rm{A}}} \right) = \alpha \left( {\rm{n}} \right)\left[ {\rm{A}} \right]\,\,\,{\rm{for}}\,{\rm{n}} \in {{\rm\mathbb{\bar {N}}}_{\rm{0}}}\,\,{\rm{and}}\,{\rm{A}} \subseteq {\rm{X,}} satisfies the translation problem f(n,f(m,A))⊆f(n+m,A), f(0,A)=A. {\rm{f}}\left( {{\rm{n}},f(m,{\rm{A)}}} \right) \subseteq {\rm{f}}\left( {{\rm{n}} + {\rm{m,A}}} \right),\,\,\,{\rm{f}}\left( {0,{\rm{A}}} \right) = {\rm{A}}{\rm{.}} Furthermore, the function F, defined by F(A,B)={ n∈¯0: A⊆f(n,B) } for A,B⊆X, {\rm{F}}\left( {{\rm{A}},{\rm{B}}} \right) = \left\{ {{\rm{n}} \in {{{\rm\mathbb{\bar {N}}}}_{\rm{0}}}:\,\,{\rm{A}} \subseteq {\rm{f}}\left( {{\rm{n}},{\rm{B}}} \right)} \right\}\,\,{\rm{for}}\,\,{\rm{A,B}} \subseteq {\rm{X,}} satisfies the Sincov problem F(A,B)+F(B,C)⊆F(A,C), 0∈F(A,A). {\rm{F}}\left( {{\rm{A}},{\rm{B}}} \right) + {\rm{F}}\left( {{\rm{B}},{\rm{C}}} \right) \subseteq {\rm{F}}\left( {{\rm{A,C}}} \right),\,\,\,\,0 \in {\rm{F}}\left( {{\rm{A}},{\rm{A}}} \right). Motivated by the above observations, we investigate a function F on the product set X2 to the power groupoid 𝒫(U) of an additively written groupoid U which is supertriangular in the sense that F(x,y)+F(y,z)⊆F(x,z) {\rm{F}}\left( {{\rm{x}},{\rm{y}}} \right) + {\rm{F}}\left( {{\rm{y}},{\rm{z}}} \right) \subseteq {\rm{F}}\left( {{\rm{x}},{\rm{z}}} \right) for all x, y, z ∈ X. For this, we introduce the convenient notations R(x,y)=F(y,x) and S(x,y)=F(x,y)+R(x,y), {\rm{R}}\left( {{\rm{x}},{\rm{y}}} \right) = {\rm{F}}\left( {{\rm{y}},{\rm{x}}} \right)\,\,\,{\rm{and}}\,\,{\rm{S}}\left( {{\rm{x}},{\rm{y}}} \right) = {\rm{F}}\left( {{\rm{x}},{\rm{y}}} \right) + {\rm{R}}\left( {{\rm{x}},{\rm{y}}} \right), and Φ(x)=F(x,x) and Ψ(x)∪y∈XS(x,y). \Phi \left( {\rm{x}} \right) = {\rm{F}}\left( {{\rm{x}},{\rm{x}}} \right)\,\,{\rm{and}}\,\,\Psi \left( {\rm{x}} \right)\bigcup\limits_{{\rm{y}} \in {\rm{X}}} {{\rm{S}}\left( {{\rm{x}},{\rm{y}}} \right).} Moreover, we gradually assume that U and F have some useful additional properties. For instance, U has a zero, U is a group, U is commutative, U is cancellative, or U has a suitable distance function; while F is nonpartial, F is symmetric, skew symmetric, or single-valued.