{"title":"平面上微分系统的共振Sturm-Liouville边值问题","authors":"A. Boscaggin, M. Garrione","doi":"10.4171/ZAA/1554","DOIUrl":null,"url":null,"abstract":"We study the Sturm-Liouville boundary value problem associated with the planar differential system Jz′ = ∇V (z) + R(t, z), where V (z) is positive and positively 2-homogeneous and R(t, z) is bounded. Assuming Landesman-Lazer type conditions, we obtain the existence of a solution in the resonant case. The proofs are performed via a shooting argument. Some applications to boundary value problems associated with scalar second order asymmetric equations are discussed. MSC 2010 Classification 34B15.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Resonant Sturm–Liouville Boundary Value Problems for Differential Systems in the Plane\",\"authors\":\"A. Boscaggin, M. Garrione\",\"doi\":\"10.4171/ZAA/1554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Sturm-Liouville boundary value problem associated with the planar differential system Jz′ = ∇V (z) + R(t, z), where V (z) is positive and positively 2-homogeneous and R(t, z) is bounded. Assuming Landesman-Lazer type conditions, we obtain the existence of a solution in the resonant case. The proofs are performed via a shooting argument. Some applications to boundary value problems associated with scalar second order asymmetric equations are discussed. MSC 2010 Classification 34B15.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ZAA/1554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ZAA/1554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resonant Sturm–Liouville Boundary Value Problems for Differential Systems in the Plane
We study the Sturm-Liouville boundary value problem associated with the planar differential system Jz′ = ∇V (z) + R(t, z), where V (z) is positive and positively 2-homogeneous and R(t, z) is bounded. Assuming Landesman-Lazer type conditions, we obtain the existence of a solution in the resonant case. The proofs are performed via a shooting argument. Some applications to boundary value problems associated with scalar second order asymmetric equations are discussed. MSC 2010 Classification 34B15.