基于滤波和直方图均衡化的图像去噪算法

Q3 Medicine
Anupama Shetter, S. N. Prajwalasimha, Swapna Havalgi
{"title":"基于滤波和直方图均衡化的图像去噪算法","authors":"Anupama Shetter, S. N. Prajwalasimha, Swapna Havalgi","doi":"10.1109/I-SMAC.2018.8653714","DOIUrl":null,"url":null,"abstract":"In this paper, a collective median filtering and histogram equalization based de-noising technique is proposed for images. Initial noise detection is performed by considering neighboring pixel values then median filtering is performed to remove high density noise. The filtered image is then subjected for histogram equalization to regain correlation between adjacent pixels. The final image enhancement is done by contrast adjustment method. The experimental results show that the proposed algorithm provides high quality restored images compared to existing ones.","PeriodicalId":53631,"journal":{"name":"Koomesh","volume":"41 1","pages":"325-328"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Image De-Noising Algorithm based on Filtering and Histogram Equalization\",\"authors\":\"Anupama Shetter, S. N. Prajwalasimha, Swapna Havalgi\",\"doi\":\"10.1109/I-SMAC.2018.8653714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a collective median filtering and histogram equalization based de-noising technique is proposed for images. Initial noise detection is performed by considering neighboring pixel values then median filtering is performed to remove high density noise. The filtered image is then subjected for histogram equalization to regain correlation between adjacent pixels. The final image enhancement is done by contrast adjustment method. The experimental results show that the proposed algorithm provides high quality restored images compared to existing ones.\",\"PeriodicalId\":53631,\"journal\":{\"name\":\"Koomesh\",\"volume\":\"41 1\",\"pages\":\"325-328\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Koomesh\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I-SMAC.2018.8653714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Koomesh","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I-SMAC.2018.8653714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于集体中值滤波和直方图均衡化的图像去噪技术。通过考虑相邻像素值进行初始噪声检测,然后进行中值滤波去除高密度噪声。然后对过滤后的图像进行直方图均衡化,以恢复相邻像素之间的相关性。最后用对比度调整法对图像进行增强。实验结果表明,与现有的恢复图像相比,该算法提供了高质量的恢复图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image De-Noising Algorithm based on Filtering and Histogram Equalization
In this paper, a collective median filtering and histogram equalization based de-noising technique is proposed for images. Initial noise detection is performed by considering neighboring pixel values then median filtering is performed to remove high density noise. The filtered image is then subjected for histogram equalization to regain correlation between adjacent pixels. The final image enhancement is done by contrast adjustment method. The experimental results show that the proposed algorithm provides high quality restored images compared to existing ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Koomesh
Koomesh Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信