PVC管材脆性断裂

Frederick J. McGarry, John F. Mandell, Lidia Hsueh-Lee
{"title":"PVC管材脆性断裂","authors":"Frederick J. McGarry,&nbsp;John F. Mandell,&nbsp;Lidia Hsueh-Lee","doi":"10.1002/polc.5070720116","DOIUrl":null,"url":null,"abstract":"<p>Methods to measure the plane strain fracture toughness (<i>K</i><sub>1c</sub>) of PVC pipe material, valid according to linear elastic fracture mechanics (LEFM), have been developed. As in metals practice, the crack tip plastic zone must be small compared to initial crack length, section thickness, and other specimen dimensions to achieve validity. Other conditions of test rate and temperature also must be fulfilled. <i>K</i><sub>1c</sub> values vary from 2.8 to 4.0 MN m<sup>−3/2</sup>. Quantitative micromechanical analyses of the plastic flow regions on the fracture surfaces account for only a fraction of the measured toughness. Other deformation mechanisms (crazing) below but near the surfaces have been observed; apparently they absorb the balance of the work required to drive the stable crack. Under catastrophic, rapid crack propagation, only a single craze exists ahead of the crack tip; the multiple crazes disappear. Thus the dynamic fracture toughness may be several factors less than the static or stable value.</p>","PeriodicalId":16867,"journal":{"name":"Journal of Polymer Science: Polymer Symposia","volume":"72 1","pages":"83-110"},"PeriodicalIF":0.0000,"publicationDate":"1985-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/polc.5070720116","citationCount":"5","resultStr":"{\"title\":\"Brittle fracture in PVC pipe material\",\"authors\":\"Frederick J. McGarry,&nbsp;John F. Mandell,&nbsp;Lidia Hsueh-Lee\",\"doi\":\"10.1002/polc.5070720116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Methods to measure the plane strain fracture toughness (<i>K</i><sub>1c</sub>) of PVC pipe material, valid according to linear elastic fracture mechanics (LEFM), have been developed. As in metals practice, the crack tip plastic zone must be small compared to initial crack length, section thickness, and other specimen dimensions to achieve validity. Other conditions of test rate and temperature also must be fulfilled. <i>K</i><sub>1c</sub> values vary from 2.8 to 4.0 MN m<sup>−3/2</sup>. Quantitative micromechanical analyses of the plastic flow regions on the fracture surfaces account for only a fraction of the measured toughness. Other deformation mechanisms (crazing) below but near the surfaces have been observed; apparently they absorb the balance of the work required to drive the stable crack. Under catastrophic, rapid crack propagation, only a single craze exists ahead of the crack tip; the multiple crazes disappear. Thus the dynamic fracture toughness may be several factors less than the static or stable value.</p>\",\"PeriodicalId\":16867,\"journal\":{\"name\":\"Journal of Polymer Science: Polymer Symposia\",\"volume\":\"72 1\",\"pages\":\"83-110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/polc.5070720116\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Science: Polymer Symposia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/polc.5070720116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science: Polymer Symposia","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/polc.5070720116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

根据线弹性断裂力学原理,提出了一种测量PVC管材平面应变断裂韧性(K1c)的方法。与金属实践一样,裂纹尖端塑性区必须小于初始裂纹长度、截面厚度和其他试样尺寸,以达到有效性。测试速率和温度的其他条件也必须满足。K1c值为2.8 ~ 4.0 MN m−3/2。断口表面塑性流动区域的定量微观力学分析只占测量韧性的一小部分。已观察到表面以下及附近的其他变形机制(裂纹);显然,它们吸收了驱动稳定裂缝所需的平衡功。在突变、快速裂纹扩展时,裂纹尖端前只存在一条裂纹;多重狂热消失了。因此,动态断裂韧性可能比静态或稳定值小几个因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brittle fracture in PVC pipe material

Methods to measure the plane strain fracture toughness (K1c) of PVC pipe material, valid according to linear elastic fracture mechanics (LEFM), have been developed. As in metals practice, the crack tip plastic zone must be small compared to initial crack length, section thickness, and other specimen dimensions to achieve validity. Other conditions of test rate and temperature also must be fulfilled. K1c values vary from 2.8 to 4.0 MN m−3/2. Quantitative micromechanical analyses of the plastic flow regions on the fracture surfaces account for only a fraction of the measured toughness. Other deformation mechanisms (crazing) below but near the surfaces have been observed; apparently they absorb the balance of the work required to drive the stable crack. Under catastrophic, rapid crack propagation, only a single craze exists ahead of the crack tip; the multiple crazes disappear. Thus the dynamic fracture toughness may be several factors less than the static or stable value.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信