环面局部共形Kähler流形的表征

IF 0.6 3区 数学 Q3 MATHEMATICS
Nicolina Istrati
{"title":"环面局部共形Kähler流形的表征","authors":"Nicolina Istrati","doi":"10.4310/jsg.2019.v17.n5.a2","DOIUrl":null,"url":null,"abstract":"We prove that a compact toric locally conformally K¨ahler manifold which is not K¨ahler admits a toric Vaisman structure. This is the final step leading to the classification of compact toric locally conformally K¨ahler manifolds. We also show, by constructing an example, that unlike in the symplectic case, toric locally conformally symplectic manifolds are not necessarily toric locally conformally K¨ahler.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"73 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A characterisation of toric locally conformally Kähler manifolds\",\"authors\":\"Nicolina Istrati\",\"doi\":\"10.4310/jsg.2019.v17.n5.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that a compact toric locally conformally K¨ahler manifold which is not K¨ahler admits a toric Vaisman structure. This is the final step leading to the classification of compact toric locally conformally K¨ahler manifolds. We also show, by constructing an example, that unlike in the symplectic case, toric locally conformally symplectic manifolds are not necessarily toric locally conformally K¨ahler.\",\"PeriodicalId\":50029,\"journal\":{\"name\":\"Journal of Symplectic Geometry\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symplectic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2019.v17.n5.a2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2019.v17.n5.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

证明了非柯赫勒的紧致环面局部共形柯赫勒流形允许一个环面维斯曼结构。这是导致紧环局部共形柯赫勒流形分类的最后一步。我们还通过构造一个例子证明,与辛情况不同,环面局部共形辛流形不一定是环面局部共形K¨ahler。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A characterisation of toric locally conformally Kähler manifolds
We prove that a compact toric locally conformally K¨ahler manifold which is not K¨ahler admits a toric Vaisman structure. This is the final step leading to the classification of compact toric locally conformally K¨ahler manifolds. We also show, by constructing an example, that unlike in the symplectic case, toric locally conformally symplectic manifolds are not necessarily toric locally conformally K¨ahler.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信