线性置换多项式码

Ryoichiro Yoshida, K. Kasai
{"title":"线性置换多项式码","authors":"Ryoichiro Yoshida, K. Kasai","doi":"10.1109/ISIT.2019.8849422","DOIUrl":null,"url":null,"abstract":"Quasi-cyclic low-density parity-check (QC-LDPC) codes are one of the most important code classes of LDPC codes. They have two drawbacks: lack of randomness and limited girth lead to a degraded decoding performance in the waterfall and error floor regions, respectively. To tackle these problems, we present a new class of LDPC codes, named linear permutation polynomial (LPP) codes, whose parity-check matrix consists of permutation matrices based on LPPs. The girth of regular QC-LDPC codes is upper bounded by 12, while LPP codes break this limit. We demonstrate that LPP codes have error performance almost equivalent to random ones.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"13 1","pages":"66-70"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Linear Permutation Polynomial Codes\",\"authors\":\"Ryoichiro Yoshida, K. Kasai\",\"doi\":\"10.1109/ISIT.2019.8849422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quasi-cyclic low-density parity-check (QC-LDPC) codes are one of the most important code classes of LDPC codes. They have two drawbacks: lack of randomness and limited girth lead to a degraded decoding performance in the waterfall and error floor regions, respectively. To tackle these problems, we present a new class of LDPC codes, named linear permutation polynomial (LPP) codes, whose parity-check matrix consists of permutation matrices based on LPPs. The girth of regular QC-LDPC codes is upper bounded by 12, while LPP codes break this limit. We demonstrate that LPP codes have error performance almost equivalent to random ones.\",\"PeriodicalId\":6708,\"journal\":{\"name\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"13 1\",\"pages\":\"66-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2019.8849422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

准循环低密度奇偶校验码是LDPC码中最重要的码类之一。它们有两个缺点:缺乏随机性和有限的周长分别导致瀑布和错误层区域的解码性能下降。为了解决这些问题,我们提出了一类新的LDPC码,称为线性置换多项式(LPP)码,其奇偶校验矩阵由基于LPP的置换矩阵组成。常规QC-LDPC码的周长上限为12,而LPP码则突破了这个极限。我们证明了LPP码的错误性能几乎等同于随机码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear Permutation Polynomial Codes
Quasi-cyclic low-density parity-check (QC-LDPC) codes are one of the most important code classes of LDPC codes. They have two drawbacks: lack of randomness and limited girth lead to a degraded decoding performance in the waterfall and error floor regions, respectively. To tackle these problems, we present a new class of LDPC codes, named linear permutation polynomial (LPP) codes, whose parity-check matrix consists of permutation matrices based on LPPs. The girth of regular QC-LDPC codes is upper bounded by 12, while LPP codes break this limit. We demonstrate that LPP codes have error performance almost equivalent to random ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信