Rulan Jiang, Yasushi A. Suzuki, Xiaogu Du, B. Lönnerdal
{"title":"乳铁蛋白和乳铁蛋白-苦糖脂组装体可被真皮成纤维细胞内化并调节基因表达。","authors":"Rulan Jiang, Yasushi A. Suzuki, Xiaogu Du, B. Lönnerdal","doi":"10.1139/bcb-2016-0090","DOIUrl":null,"url":null,"abstract":"Lactoferrin (Lf) is an iron-binding multifunctional protein, mainly present in external secretions. Lf is known to penetrate skin and may thus exert its multiple functions in skin. Sophorolipids (SLs) are glycolipid biosurfactants, which have been shown to enhance absorption of commercial bovine Lf (CbLf) in model skin via forming an assembly with CbLf. In this study, uptake and post-internalization localization of bovine Lf (bLf), CbLf, and human Lf (hLf) with or without forming assemblies with SLs in human dermal fibroblasts (HDFn) were determined using 125I-labeled Lfs and confocal microscopy, respectively. Our results show that all 3 Lfs were internalized by HDFn; although SLs did not significantly affect the uptake of Lfs, it changed Lf localization by accumulating Lfs in the perinuclear region. Furthermore, microarrays were used to investigate transcriptional profiling in HDFn in response to CbLf, SLs, or CbLf-SLs-assembly treatments. Transcriptome profiling indicates that CbLf may play roles in the protection of skin from oxidative stress, immunomodulatory activities, and enhancement of wound healing. The assembly had similar effects but dramatically modulated the transcription of some genes. SLs alone modified signaling pathways related to lipid metabolism, as well as synthesis of sex hormones and vitamins. Thus, CbLf may exert beneficial effects on skin, and these effects may be modulated by SLs.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"72 1","pages":"110-118"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Lactoferrin and the lactoferrin-sophorolipids-assembly can be internalized by dermal fibroblasts and regulate gene expression.\",\"authors\":\"Rulan Jiang, Yasushi A. Suzuki, Xiaogu Du, B. Lönnerdal\",\"doi\":\"10.1139/bcb-2016-0090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lactoferrin (Lf) is an iron-binding multifunctional protein, mainly present in external secretions. Lf is known to penetrate skin and may thus exert its multiple functions in skin. Sophorolipids (SLs) are glycolipid biosurfactants, which have been shown to enhance absorption of commercial bovine Lf (CbLf) in model skin via forming an assembly with CbLf. In this study, uptake and post-internalization localization of bovine Lf (bLf), CbLf, and human Lf (hLf) with or without forming assemblies with SLs in human dermal fibroblasts (HDFn) were determined using 125I-labeled Lfs and confocal microscopy, respectively. Our results show that all 3 Lfs were internalized by HDFn; although SLs did not significantly affect the uptake of Lfs, it changed Lf localization by accumulating Lfs in the perinuclear region. Furthermore, microarrays were used to investigate transcriptional profiling in HDFn in response to CbLf, SLs, or CbLf-SLs-assembly treatments. Transcriptome profiling indicates that CbLf may play roles in the protection of skin from oxidative stress, immunomodulatory activities, and enhancement of wound healing. The assembly had similar effects but dramatically modulated the transcription of some genes. SLs alone modified signaling pathways related to lipid metabolism, as well as synthesis of sex hormones and vitamins. Thus, CbLf may exert beneficial effects on skin, and these effects may be modulated by SLs.\",\"PeriodicalId\":9524,\"journal\":{\"name\":\"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire\",\"volume\":\"72 1\",\"pages\":\"110-118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/bcb-2016-0090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/bcb-2016-0090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lactoferrin and the lactoferrin-sophorolipids-assembly can be internalized by dermal fibroblasts and regulate gene expression.
Lactoferrin (Lf) is an iron-binding multifunctional protein, mainly present in external secretions. Lf is known to penetrate skin and may thus exert its multiple functions in skin. Sophorolipids (SLs) are glycolipid biosurfactants, which have been shown to enhance absorption of commercial bovine Lf (CbLf) in model skin via forming an assembly with CbLf. In this study, uptake and post-internalization localization of bovine Lf (bLf), CbLf, and human Lf (hLf) with or without forming assemblies with SLs in human dermal fibroblasts (HDFn) were determined using 125I-labeled Lfs and confocal microscopy, respectively. Our results show that all 3 Lfs were internalized by HDFn; although SLs did not significantly affect the uptake of Lfs, it changed Lf localization by accumulating Lfs in the perinuclear region. Furthermore, microarrays were used to investigate transcriptional profiling in HDFn in response to CbLf, SLs, or CbLf-SLs-assembly treatments. Transcriptome profiling indicates that CbLf may play roles in the protection of skin from oxidative stress, immunomodulatory activities, and enhancement of wound healing. The assembly had similar effects but dramatically modulated the transcription of some genes. SLs alone modified signaling pathways related to lipid metabolism, as well as synthesis of sex hormones and vitamins. Thus, CbLf may exert beneficial effects on skin, and these effects may be modulated by SLs.