{"title":"用拉普拉斯描述的双曲型离散和微分内含物的最优控制","authors":"E. Mahmudov","doi":"10.1051/cocv/2022061","DOIUrl":null,"url":null,"abstract":"The paper is devoted to the optimization of a first mixed initial-boundary value problem for hyperbolic differential inclusions (DFIs) with Laplace operator. For this, an auxiliary problem with a hyperbolic discrete inclusion is defined and, using locally conjugate mappings, necessary and sufficient optimality conditions for hyperbolic discrete inclusions are proved. Then, using the method of discretization of hyperbolic DFIs and the already obtained optimality conditions for discrete inclusions, the optimality conditions for the discrete approximate problem are formulated in the form of the Euler-Lagrange type inclusion. Thus, using specially proved equivalence theorems, which are the only tool for constructing Euler-Lagrangian inclusions, we establish sufficient optimality conditions for hyperbolic DFIs. Further, the way of extending the obtained results to the multidimensional case is indicated. To demonstrate the above approach, some linear problems and polyhedral optimization with hyperbolic DFIs are investigated.","PeriodicalId":50500,"journal":{"name":"Esaim-Control Optimisation and Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimal control of hyperbolic type discrete and differential inclusions described by the Laplace\",\"authors\":\"E. Mahmudov\",\"doi\":\"10.1051/cocv/2022061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is devoted to the optimization of a first mixed initial-boundary value problem for hyperbolic differential inclusions (DFIs) with Laplace operator. For this, an auxiliary problem with a hyperbolic discrete inclusion is defined and, using locally conjugate mappings, necessary and sufficient optimality conditions for hyperbolic discrete inclusions are proved. Then, using the method of discretization of hyperbolic DFIs and the already obtained optimality conditions for discrete inclusions, the optimality conditions for the discrete approximate problem are formulated in the form of the Euler-Lagrange type inclusion. Thus, using specially proved equivalence theorems, which are the only tool for constructing Euler-Lagrangian inclusions, we establish sufficient optimality conditions for hyperbolic DFIs. Further, the way of extending the obtained results to the multidimensional case is indicated. To demonstrate the above approach, some linear problems and polyhedral optimization with hyperbolic DFIs are investigated.\",\"PeriodicalId\":50500,\"journal\":{\"name\":\"Esaim-Control Optimisation and Calculus of Variations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Control Optimisation and Calculus of Variations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/cocv/2022061\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Control Optimisation and Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/cocv/2022061","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Optimal control of hyperbolic type discrete and differential inclusions described by the Laplace
The paper is devoted to the optimization of a first mixed initial-boundary value problem for hyperbolic differential inclusions (DFIs) with Laplace operator. For this, an auxiliary problem with a hyperbolic discrete inclusion is defined and, using locally conjugate mappings, necessary and sufficient optimality conditions for hyperbolic discrete inclusions are proved. Then, using the method of discretization of hyperbolic DFIs and the already obtained optimality conditions for discrete inclusions, the optimality conditions for the discrete approximate problem are formulated in the form of the Euler-Lagrange type inclusion. Thus, using specially proved equivalence theorems, which are the only tool for constructing Euler-Lagrangian inclusions, we establish sufficient optimality conditions for hyperbolic DFIs. Further, the way of extending the obtained results to the multidimensional case is indicated. To demonstrate the above approach, some linear problems and polyhedral optimization with hyperbolic DFIs are investigated.
期刊介绍:
ESAIM: COCV strives to publish rapidly and efficiently papers and surveys in the areas of Control, Optimisation and Calculus of Variations.
Articles may be theoretical, computational, or both, and they will cover contemporary subjects with impact in forefront technology, biosciences, materials science, computer vision, continuum physics, decision sciences and other allied disciplines.
Targeted topics include:
in control: modeling, controllability, optimal control, stabilization, control design, hybrid control, robustness analysis, numerical and computational methods for control, stochastic or deterministic, continuous or discrete control systems, finite-dimensional or infinite-dimensional control systems, geometric control, quantum control, game theory;
in optimisation: mathematical programming, large scale systems, stochastic optimisation, combinatorial optimisation, shape optimisation, convex or nonsmooth optimisation, inverse problems, interior point methods, duality methods, numerical methods, convergence and complexity, global optimisation, optimisation and dynamical systems, optimal transport, machine learning, image or signal analysis;
in calculus of variations: variational methods for differential equations and Hamiltonian systems, variational inequalities; semicontinuity and convergence, existence and regularity of minimizers and critical points of functionals, relaxation; geometric problems and the use and development of geometric measure theory tools; problems involving randomness; viscosity solutions; numerical methods; homogenization, multiscale and singular perturbation problems.