球空间的构造和连续性的概念

Q4 Mathematics
Ren'e Bartsch, K. Kuhlmann, F. Kuhlmann
{"title":"球空间的构造和连续性的概念","authors":"Ren'e Bartsch, K. Kuhlmann, F. Kuhlmann","doi":"10.53733/157","DOIUrl":null,"url":null,"abstract":"Spherically complete ball spaces provide a simple framework for the encoding of completeness properties of various spaces and ordered structures. This allows to prove generic versions of theorems that work with these completeness properties, such as fixed point theorems and related results. For the purpose of applying the generic theorems, it is important to have methods for the construction of new spherically complete ball spaces from existing ones. Given various ball spaces on the same underlying set, we discuss the construction of new ball spaces through set theoretic operations on the balls. A definition of continuity for functions on ball spaces leads to the notion of quotient spaces. Further, we show the existence of products and coproducts and use this to derive a topological category associated with ball spaces.","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Construction of ball spaces and the notion of continuity\",\"authors\":\"Ren'e Bartsch, K. Kuhlmann, F. Kuhlmann\",\"doi\":\"10.53733/157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spherically complete ball spaces provide a simple framework for the encoding of completeness properties of various spaces and ordered structures. This allows to prove generic versions of theorems that work with these completeness properties, such as fixed point theorems and related results. For the purpose of applying the generic theorems, it is important to have methods for the construction of new spherically complete ball spaces from existing ones. Given various ball spaces on the same underlying set, we discuss the construction of new ball spaces through set theoretic operations on the balls. A definition of continuity for functions on ball spaces leads to the notion of quotient spaces. Further, we show the existence of products and coproducts and use this to derive a topological category associated with ball spaces.\",\"PeriodicalId\":30137,\"journal\":{\"name\":\"New Zealand Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Zealand Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53733/157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

球完备球空间为编码各种空间和有序结构的完备性提供了一个简单的框架。这允许证明与这些完备性有关的定理的泛型版本,例如不动点定理和相关结果。为了应用泛型定理,重要的是要有从已有球空间构造新的球完全空间的方法。给定同一基础集合上的各种球空间,通过对球的集合理论运算,讨论了新球空间的构造。球空间上函数连续性的定义引出了商空间的概念。进一步,我们证明了积和余积的存在性,并以此导出了一个与球空间相关的拓扑范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of ball spaces and the notion of continuity
Spherically complete ball spaces provide a simple framework for the encoding of completeness properties of various spaces and ordered structures. This allows to prove generic versions of theorems that work with these completeness properties, such as fixed point theorems and related results. For the purpose of applying the generic theorems, it is important to have methods for the construction of new spherically complete ball spaces from existing ones. Given various ball spaces on the same underlying set, we discuss the construction of new ball spaces through set theoretic operations on the balls. A definition of continuity for functions on ball spaces leads to the notion of quotient spaces. Further, we show the existence of products and coproducts and use this to derive a topological category associated with ball spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Zealand Journal of Mathematics
New Zealand Journal of Mathematics Mathematics-Algebra and Number Theory
CiteScore
1.10
自引率
0.00%
发文量
11
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信