实数的低度测试

Vipul Arora, Arnab Bhattacharyya, Noah Fleming, E. Kelman, Yuichi Yoshida
{"title":"实数的低度测试","authors":"Vipul Arora, Arnab Bhattacharyya, Noah Fleming, E. Kelman, Yuichi Yoshida","doi":"10.48550/arXiv.2204.08404","DOIUrl":null,"url":null,"abstract":"We study the problem of testing whether a function $f: \\mathbb{R}^n \\to \\mathbb{R}$ is a polynomial of degree at most $d$ in the \\emph{distribution-free} testing model. Here, the distance between functions is measured with respect to an unknown distribution $\\mathcal{D}$ over $\\mathbb{R}^n$ from which we can draw samples. In contrast to previous work, we do not assume that $\\mathcal{D}$ has finite support. We design a tester that given query access to $f$, and sample access to $\\mathcal{D}$, makes $(d/\\varepsilon)^{O(1)}$ many queries to $f$, accepts with probability $1$ if $f$ is a polynomial of degree $d$, and rejects with probability at least $2/3$ if every degree-$d$ polynomial $P$ disagrees with $f$ on a set of mass at least $\\varepsilon$ with respect to $\\mathcal{D}$. Our result also holds under mild assumptions when we receive only a polynomial number of bits of precision for each query to $f$, or when $f$ can only be queried on rational points representable using a logarithmic number of bits. Along the way, we prove a new stability theorem for multivariate polynomials that may be of independent interest.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"26 1","pages":"738-792"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low Degree Testing over the Reals\",\"authors\":\"Vipul Arora, Arnab Bhattacharyya, Noah Fleming, E. Kelman, Yuichi Yoshida\",\"doi\":\"10.48550/arXiv.2204.08404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of testing whether a function $f: \\\\mathbb{R}^n \\\\to \\\\mathbb{R}$ is a polynomial of degree at most $d$ in the \\\\emph{distribution-free} testing model. Here, the distance between functions is measured with respect to an unknown distribution $\\\\mathcal{D}$ over $\\\\mathbb{R}^n$ from which we can draw samples. In contrast to previous work, we do not assume that $\\\\mathcal{D}$ has finite support. We design a tester that given query access to $f$, and sample access to $\\\\mathcal{D}$, makes $(d/\\\\varepsilon)^{O(1)}$ many queries to $f$, accepts with probability $1$ if $f$ is a polynomial of degree $d$, and rejects with probability at least $2/3$ if every degree-$d$ polynomial $P$ disagrees with $f$ on a set of mass at least $\\\\varepsilon$ with respect to $\\\\mathcal{D}$. Our result also holds under mild assumptions when we receive only a polynomial number of bits of precision for each query to $f$, or when $f$ can only be queried on rational points representable using a logarithmic number of bits. Along the way, we prove a new stability theorem for multivariate polynomials that may be of independent interest.\",\"PeriodicalId\":11639,\"journal\":{\"name\":\"Electron. Colloquium Comput. Complex.\",\"volume\":\"26 1\",\"pages\":\"738-792\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Colloquium Comput. Complex.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.08404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.08404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在\emph{无分布}检验模型中,研究了一个函数$f: \mathbb{R}^n \to \mathbb{R}$是否为次多项式(最多$d$)的检验问题。在这里,函数之间的距离是相对于一个未知分布$\mathcal{D}$ / $\mathbb{R}^n$来测量的,我们可以从中绘制样本。与以前的工作相反,我们不假设$\mathcal{D}$具有有限的支持。我们设计了一个测试器,给定对$f$的查询访问权和对$\mathcal{D}$的样本访问权,对$f$进行$(d/\varepsilon)^{O(1)}$多次查询,如果$f$是次$d$的多项式,则以概率$1$接受。并且拒绝的概率至少为$2/3$如果每个度- $d$多项式$P$在一组质量上与$f$不一致至少$\varepsilon$相对于$\mathcal{D}$。我们的结果在温和的假设下也成立,当我们对$f$的每个查询只接收到多项式位数的精度,或者$f$只能在使用对数位数表示的有理点上查询时。在此过程中,我们证明了一个新的多元多项式的稳定性定理,这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low Degree Testing over the Reals
We study the problem of testing whether a function $f: \mathbb{R}^n \to \mathbb{R}$ is a polynomial of degree at most $d$ in the \emph{distribution-free} testing model. Here, the distance between functions is measured with respect to an unknown distribution $\mathcal{D}$ over $\mathbb{R}^n$ from which we can draw samples. In contrast to previous work, we do not assume that $\mathcal{D}$ has finite support. We design a tester that given query access to $f$, and sample access to $\mathcal{D}$, makes $(d/\varepsilon)^{O(1)}$ many queries to $f$, accepts with probability $1$ if $f$ is a polynomial of degree $d$, and rejects with probability at least $2/3$ if every degree-$d$ polynomial $P$ disagrees with $f$ on a set of mass at least $\varepsilon$ with respect to $\mathcal{D}$. Our result also holds under mild assumptions when we receive only a polynomial number of bits of precision for each query to $f$, or when $f$ can only be queried on rational points representable using a logarithmic number of bits. Along the way, we prove a new stability theorem for multivariate polynomials that may be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信