{"title":"基于RBF神经网络的连续搅拌槽式反应器非线性PID控制器参数优化","authors":"Xingxi Shi, Honghao Zhao, Zheng Fan","doi":"10.1177/00202940231189307","DOIUrl":null,"url":null,"abstract":"The temperature system of the Continuous Stirred Tank Reactor (CSTR) has the characteristics of strong nonlinearity and uncertain parameters. The linear PID controller makes it difficult to meet CSTR’s control requirements. Nonlinear PID (NPID) can improve the control effect of nonlinear controlled objects, but due to the influence of nonlinear function selection and manual parameter setting, when parameters are uncertain or subject to external interference, the control performance of the system will decrease. To improve the adaptive capability of the NPID controller, the RBF-NPID control algorithm is proposed. The learning ability of RBF neural network is used to adjust NPID parameters online to improve the control performance of the system. In order to verify the effectiveness of the proposed algorithm, a CSTR model was established in MATLAB and algorithm comparison research was carried out. Simulation results show the effectiveness and superiority of the proposed algorithm.","PeriodicalId":18375,"journal":{"name":"Measurement and Control","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter optimization of nonlinear PID controller using RBF neural network for continuous stirred tank reactor\",\"authors\":\"Xingxi Shi, Honghao Zhao, Zheng Fan\",\"doi\":\"10.1177/00202940231189307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The temperature system of the Continuous Stirred Tank Reactor (CSTR) has the characteristics of strong nonlinearity and uncertain parameters. The linear PID controller makes it difficult to meet CSTR’s control requirements. Nonlinear PID (NPID) can improve the control effect of nonlinear controlled objects, but due to the influence of nonlinear function selection and manual parameter setting, when parameters are uncertain or subject to external interference, the control performance of the system will decrease. To improve the adaptive capability of the NPID controller, the RBF-NPID control algorithm is proposed. The learning ability of RBF neural network is used to adjust NPID parameters online to improve the control performance of the system. In order to verify the effectiveness of the proposed algorithm, a CSTR model was established in MATLAB and algorithm comparison research was carried out. Simulation results show the effectiveness and superiority of the proposed algorithm.\",\"PeriodicalId\":18375,\"journal\":{\"name\":\"Measurement and Control\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00202940231189307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231189307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parameter optimization of nonlinear PID controller using RBF neural network for continuous stirred tank reactor
The temperature system of the Continuous Stirred Tank Reactor (CSTR) has the characteristics of strong nonlinearity and uncertain parameters. The linear PID controller makes it difficult to meet CSTR’s control requirements. Nonlinear PID (NPID) can improve the control effect of nonlinear controlled objects, but due to the influence of nonlinear function selection and manual parameter setting, when parameters are uncertain or subject to external interference, the control performance of the system will decrease. To improve the adaptive capability of the NPID controller, the RBF-NPID control algorithm is proposed. The learning ability of RBF neural network is used to adjust NPID parameters online to improve the control performance of the system. In order to verify the effectiveness of the proposed algorithm, a CSTR model was established in MATLAB and algorithm comparison research was carried out. Simulation results show the effectiveness and superiority of the proposed algorithm.