{"title":"农村电气化离网混合可再生能源系统技术经济可行性分析","authors":"J. Ahmed, K. Harijan, P. Shaikh, A. A. Lashari","doi":"10.11648/J.JEEE.20210901.12","DOIUrl":null,"url":null,"abstract":"The demand for electricity in remote rural areas is a major obstacle to their development. The extension of the grid network to remote rural areas has been identified as a difficult topography for complex constructions and enormous investments. The development of off-grid renewable energy generation technologies offers the opportunity for tackling these challenges. This study provides a techno-economic feasibility analysis of an off-grid hybrid renewable energy system for a rural village of district Kech, Balochistan, Pakistan. The proposed hybrid system integrates the different combinations of the wind turbine, solar PV modules, and battery backups to meet the required electric load demand. The hybrid system is modeled and optimized through a powerful simulation software Hybrid Optimized Model for Electric Renewable (HOMER-Pro). The optimized configuration of the hybrid system consists of wind turbines (12kW), solar PV (103kW), 224 lead-acid batteries (72.4Ah each), and 29.1 kW converters. The simulation results show that the proposed system can meet the power requirements of 197.74kWh/day primary demand load with 27.87kW peak load. This system configuration has the Net Present Cost (NPC) of $127,345 and Cost of Energy (COE) of 0.137$/kWh with a 100% renewable fraction. Furthermore, the results of the present study are compared with the literature and have resulted in a cost-effective hybrid renewable energy system with a low COE.","PeriodicalId":37533,"journal":{"name":"International Journal of Electrical and Electronic Engineering and Telecommunications","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Techno-economic Feasibility Analysis of an Off-grid Hybrid Renewable Energy System for Rural Electrification\",\"authors\":\"J. Ahmed, K. Harijan, P. Shaikh, A. A. Lashari\",\"doi\":\"10.11648/J.JEEE.20210901.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand for electricity in remote rural areas is a major obstacle to their development. The extension of the grid network to remote rural areas has been identified as a difficult topography for complex constructions and enormous investments. The development of off-grid renewable energy generation technologies offers the opportunity for tackling these challenges. This study provides a techno-economic feasibility analysis of an off-grid hybrid renewable energy system for a rural village of district Kech, Balochistan, Pakistan. The proposed hybrid system integrates the different combinations of the wind turbine, solar PV modules, and battery backups to meet the required electric load demand. The hybrid system is modeled and optimized through a powerful simulation software Hybrid Optimized Model for Electric Renewable (HOMER-Pro). The optimized configuration of the hybrid system consists of wind turbines (12kW), solar PV (103kW), 224 lead-acid batteries (72.4Ah each), and 29.1 kW converters. The simulation results show that the proposed system can meet the power requirements of 197.74kWh/day primary demand load with 27.87kW peak load. This system configuration has the Net Present Cost (NPC) of $127,345 and Cost of Energy (COE) of 0.137$/kWh with a 100% renewable fraction. Furthermore, the results of the present study are compared with the literature and have resulted in a cost-effective hybrid renewable energy system with a low COE.\",\"PeriodicalId\":37533,\"journal\":{\"name\":\"International Journal of Electrical and Electronic Engineering and Telecommunications\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Electronic Engineering and Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.JEEE.20210901.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Electronic Engineering and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.JEEE.20210901.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Techno-economic Feasibility Analysis of an Off-grid Hybrid Renewable Energy System for Rural Electrification
The demand for electricity in remote rural areas is a major obstacle to their development. The extension of the grid network to remote rural areas has been identified as a difficult topography for complex constructions and enormous investments. The development of off-grid renewable energy generation technologies offers the opportunity for tackling these challenges. This study provides a techno-economic feasibility analysis of an off-grid hybrid renewable energy system for a rural village of district Kech, Balochistan, Pakistan. The proposed hybrid system integrates the different combinations of the wind turbine, solar PV modules, and battery backups to meet the required electric load demand. The hybrid system is modeled and optimized through a powerful simulation software Hybrid Optimized Model for Electric Renewable (HOMER-Pro). The optimized configuration of the hybrid system consists of wind turbines (12kW), solar PV (103kW), 224 lead-acid batteries (72.4Ah each), and 29.1 kW converters. The simulation results show that the proposed system can meet the power requirements of 197.74kWh/day primary demand load with 27.87kW peak load. This system configuration has the Net Present Cost (NPC) of $127,345 and Cost of Energy (COE) of 0.137$/kWh with a 100% renewable fraction. Furthermore, the results of the present study are compared with the literature and have resulted in a cost-effective hybrid renewable energy system with a low COE.
期刊介绍:
International Journal of Electrical and Electronic Engineering & Telecommunications. IJEETC is a scholarly peer-reviewed international scientific journal published quarterly, focusing on theories, systems, methods, algorithms and applications in electrical and electronic engineering & telecommunications. It provide a high profile, leading edge forum for academic researchers, industrial professionals, engineers, consultants, managers, educators and policy makers working in the field to contribute and disseminate innovative new work on Electrical and Electronic Engineering & Telecommunications. All papers will be blind reviewed and accepted papers will be published quarterly, which is available online (open access) and in printed version.