R. K. Nutor, Muhammad Azeemullah, Q. Cao, X. D. Wang, D.X. Zhang, J. Jiang
{"title":"无co Fe50mn27ni10cr13高熵合金的组织与性能","authors":"R. K. Nutor, Muhammad Azeemullah, Q. Cao, X. D. Wang, D.X. Zhang, J. Jiang","doi":"10.2139/ssrn.3542973","DOIUrl":null,"url":null,"abstract":"The microstructure, mechanical and corrosion properties of a cost-effective face-center cubic (fcc)-structured Co-free Fe50Mn27Ni10Cr13 high entropy alloy (HEA), which is developed here, have been studied using a comprehensive approach of ex-situ tensile tests, in-situ SEM/EBSD tensile measurements, ex-situ TEM studies, Tafel polarization, and immersion tests. After thermo-mechanical treatments, this alloy exhibits a tensile strength of 463 MPa and elongation of over 40% which are comparable to other expensive HEAs. A miniature-designed dog-bone specimen for in-situ SEM/EBSD measurements was successfully employed to study the underlying deformation mechanisms of the alloy, exhibiting the double-fiber 〈111〉 and 〈001〉 texture typical of TWIP steels. Nano-, meso- and macro-scale studies revealed that the excellent combination of strength and ductility of this newly-developed cost-effective fcc-structured HEA is originated from the formation of stacking faults and nano-twins during tensile deformation. This newly-developed alloy also exhibits good corrosion resistance in the following solutions: NaCl > NaOH > H2SO4 > HCl. The corrosion resistance was mostly found to be dependent on the amount of Mn-oxide in the passive film formed on the surface of the alloy. This work, following the non-equiatomic HEA design strategy, develops a cost-effective HEA with a good combination of mechanical with corrosion properties, which will trigger more investigations.","PeriodicalId":18341,"journal":{"name":"Materials Science eJournal","volume":"357 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Microstructure and Properties of a Co-Free Fe50mn27ni10cr13 High Entropy Alloy\",\"authors\":\"R. K. Nutor, Muhammad Azeemullah, Q. Cao, X. D. Wang, D.X. Zhang, J. Jiang\",\"doi\":\"10.2139/ssrn.3542973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The microstructure, mechanical and corrosion properties of a cost-effective face-center cubic (fcc)-structured Co-free Fe50Mn27Ni10Cr13 high entropy alloy (HEA), which is developed here, have been studied using a comprehensive approach of ex-situ tensile tests, in-situ SEM/EBSD tensile measurements, ex-situ TEM studies, Tafel polarization, and immersion tests. After thermo-mechanical treatments, this alloy exhibits a tensile strength of 463 MPa and elongation of over 40% which are comparable to other expensive HEAs. A miniature-designed dog-bone specimen for in-situ SEM/EBSD measurements was successfully employed to study the underlying deformation mechanisms of the alloy, exhibiting the double-fiber 〈111〉 and 〈001〉 texture typical of TWIP steels. Nano-, meso- and macro-scale studies revealed that the excellent combination of strength and ductility of this newly-developed cost-effective fcc-structured HEA is originated from the formation of stacking faults and nano-twins during tensile deformation. This newly-developed alloy also exhibits good corrosion resistance in the following solutions: NaCl > NaOH > H2SO4 > HCl. The corrosion resistance was mostly found to be dependent on the amount of Mn-oxide in the passive film formed on the surface of the alloy. This work, following the non-equiatomic HEA design strategy, develops a cost-effective HEA with a good combination of mechanical with corrosion properties, which will trigger more investigations.\",\"PeriodicalId\":18341,\"journal\":{\"name\":\"Materials Science eJournal\",\"volume\":\"357 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3542973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3542973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microstructure and Properties of a Co-Free Fe50mn27ni10cr13 High Entropy Alloy
The microstructure, mechanical and corrosion properties of a cost-effective face-center cubic (fcc)-structured Co-free Fe50Mn27Ni10Cr13 high entropy alloy (HEA), which is developed here, have been studied using a comprehensive approach of ex-situ tensile tests, in-situ SEM/EBSD tensile measurements, ex-situ TEM studies, Tafel polarization, and immersion tests. After thermo-mechanical treatments, this alloy exhibits a tensile strength of 463 MPa and elongation of over 40% which are comparable to other expensive HEAs. A miniature-designed dog-bone specimen for in-situ SEM/EBSD measurements was successfully employed to study the underlying deformation mechanisms of the alloy, exhibiting the double-fiber 〈111〉 and 〈001〉 texture typical of TWIP steels. Nano-, meso- and macro-scale studies revealed that the excellent combination of strength and ductility of this newly-developed cost-effective fcc-structured HEA is originated from the formation of stacking faults and nano-twins during tensile deformation. This newly-developed alloy also exhibits good corrosion resistance in the following solutions: NaCl > NaOH > H2SO4 > HCl. The corrosion resistance was mostly found to be dependent on the amount of Mn-oxide in the passive film formed on the surface of the alloy. This work, following the non-equiatomic HEA design strategy, develops a cost-effective HEA with a good combination of mechanical with corrosion properties, which will trigger more investigations.