RGB图像中关节机器人无标记姿态估计的合成数据应用

Jens Lambrecht, Linh Kästner
{"title":"RGB图像中关节机器人无标记姿态估计的合成数据应用","authors":"Jens Lambrecht, Linh Kästner","doi":"10.1109/ICAR46387.2019.8981600","DOIUrl":null,"url":null,"abstract":"Pose estimation is a necessity for many applications in robotics incorporating interaction between the robot and external camera-equipped devices, e.g. mobile robots or Augmented Reality devices. In the practice of monocular cameras, one mostly takes advantage of pose estimation through fiducial marker detection. We propose a novel approach for marker-less robot pose estimation through monocular cameras utilizing 2D keypoint detection and 3D keypoint determination through readings from the encoders and forward kinematics. In particular, 2D-3D point correspondences enable the pose estimation through solving the Perspective-n-Point problem for calibrated cameras. The method does not rely on any depth data or initializations. The robust 2D keypoint detection is implemented by modern Convolutional Neural Networks trained on different dataset configurations of real and synthetic data in order to quantitatively evaluate robustness, precision and data efficiency. We demonstrate that the method provides robust pose estimation for random joint poses and benchmark the performance of different (synthetic) dataset configurations. Furthermore, we compare the accuracies to marker pose estimation and give an outlook towards enhancements and realtime capability.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"62 1","pages":"240-247"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Towards the Usage of Synthetic Data for Marker-Less Pose Estimation of Articulated Robots in RGB Images\",\"authors\":\"Jens Lambrecht, Linh Kästner\",\"doi\":\"10.1109/ICAR46387.2019.8981600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pose estimation is a necessity for many applications in robotics incorporating interaction between the robot and external camera-equipped devices, e.g. mobile robots or Augmented Reality devices. In the practice of monocular cameras, one mostly takes advantage of pose estimation through fiducial marker detection. We propose a novel approach for marker-less robot pose estimation through monocular cameras utilizing 2D keypoint detection and 3D keypoint determination through readings from the encoders and forward kinematics. In particular, 2D-3D point correspondences enable the pose estimation through solving the Perspective-n-Point problem for calibrated cameras. The method does not rely on any depth data or initializations. The robust 2D keypoint detection is implemented by modern Convolutional Neural Networks trained on different dataset configurations of real and synthetic data in order to quantitatively evaluate robustness, precision and data efficiency. We demonstrate that the method provides robust pose estimation for random joint poses and benchmark the performance of different (synthetic) dataset configurations. Furthermore, we compare the accuracies to marker pose estimation and give an outlook towards enhancements and realtime capability.\",\"PeriodicalId\":6606,\"journal\":{\"name\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"62 1\",\"pages\":\"240-247\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR46387.2019.8981600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

姿态估计对于机器人和外部摄像头设备(如移动机器人或增强现实设备)之间的交互的许多应用来说是必要的。在单目相机的实际应用中,人们主要利用基准标记检测来进行姿态估计。我们提出了一种新的方法来无标记机器人姿态估计通过单眼相机利用二维关键点检测和三维关键点确定通过读取编码器和正运动学。特别是,2D-3D点对应通过解决校准相机的Perspective-n-Point问题来实现姿态估计。该方法不依赖于任何深度数据或初始化。利用现代卷积神经网络在真实数据和合成数据的不同数据集配置上进行训练,实现鲁棒的二维关键点检测,以定量评估鲁棒性、精度和数据效率。我们证明了该方法为随机关节姿态提供了鲁棒姿态估计,并对不同(合成)数据集配置的性能进行了基准测试。此外,我们将精度与标记姿态估计进行了比较,并对增强和实时能力进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards the Usage of Synthetic Data for Marker-Less Pose Estimation of Articulated Robots in RGB Images
Pose estimation is a necessity for many applications in robotics incorporating interaction between the robot and external camera-equipped devices, e.g. mobile robots or Augmented Reality devices. In the practice of monocular cameras, one mostly takes advantage of pose estimation through fiducial marker detection. We propose a novel approach for marker-less robot pose estimation through monocular cameras utilizing 2D keypoint detection and 3D keypoint determination through readings from the encoders and forward kinematics. In particular, 2D-3D point correspondences enable the pose estimation through solving the Perspective-n-Point problem for calibrated cameras. The method does not rely on any depth data or initializations. The robust 2D keypoint detection is implemented by modern Convolutional Neural Networks trained on different dataset configurations of real and synthetic data in order to quantitatively evaluate robustness, precision and data efficiency. We demonstrate that the method provides robust pose estimation for random joint poses and benchmark the performance of different (synthetic) dataset configurations. Furthermore, we compare the accuracies to marker pose estimation and give an outlook towards enhancements and realtime capability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信