有限方法的层次基和奇异基

R. Graglia, A. Peterson, P. Petrini, L. Matekovits
{"title":"有限方法的层次基和奇异基","authors":"R. Graglia, A. Peterson, P. Petrini, L. Matekovits","doi":"10.1109/COMPEM.2015.7052543","DOIUrl":null,"url":null,"abstract":"Hierarchical basis function families that incorporate singular behavior to model fields with corner singularities are reviewed. These families are of the additive kind, and combine a traditional polynomial-complete representation with additional singular terms that incorporate general exponents that may be adjusted for the specific wedge angle of interest. A few results are reported to validate the benefits of using such bases when dealing with two-dimensional structures with corners meshed with triangular cells.","PeriodicalId":6530,"journal":{"name":"2015 IEEE International Conference on Computational Electromagnetics","volume":"25 1","pages":"26-29"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical and singular bases for finite methods\",\"authors\":\"R. Graglia, A. Peterson, P. Petrini, L. Matekovits\",\"doi\":\"10.1109/COMPEM.2015.7052543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hierarchical basis function families that incorporate singular behavior to model fields with corner singularities are reviewed. These families are of the additive kind, and combine a traditional polynomial-complete representation with additional singular terms that incorporate general exponents that may be adjusted for the specific wedge angle of interest. A few results are reported to validate the benefits of using such bases when dealing with two-dimensional structures with corners meshed with triangular cells.\",\"PeriodicalId\":6530,\"journal\":{\"name\":\"2015 IEEE International Conference on Computational Electromagnetics\",\"volume\":\"25 1\",\"pages\":\"26-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computational Electromagnetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEM.2015.7052543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computational Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2015.7052543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

评述了将奇异行为纳入具有角点奇异性的模型域的层次基函数族。这些族是加性的,结合了传统的多项式完备表示和附加的奇异项,这些奇异项包含了一般指数,可以根据感兴趣的特定楔角进行调整。一些结果被报道来验证在处理角与三角形单元网格的二维结构时使用这种基的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical and singular bases for finite methods
Hierarchical basis function families that incorporate singular behavior to model fields with corner singularities are reviewed. These families are of the additive kind, and combine a traditional polynomial-complete representation with additional singular terms that incorporate general exponents that may be adjusted for the specific wedge angle of interest. A few results are reported to validate the benefits of using such bases when dealing with two-dimensional structures with corners meshed with triangular cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信