使用特征匹配GAN的条件图像生成

Yuzhong Liu, Qiyang Zhao, Cheng Jiang
{"title":"使用特征匹配GAN的条件图像生成","authors":"Yuzhong Liu, Qiyang Zhao, Cheng Jiang","doi":"10.1109/CISP-BMEI.2017.8302049","DOIUrl":null,"url":null,"abstract":"Generative Adversarial Net is a frontier method of generative models for images, audios and videos. In this paper, we focus on conditional image generation and introduce conditional Feature-Matching Generative Adversarial Net to generate images from category labels. By visualizing state-of-art discriminative conditional generative models, we find these networks do not gain clear semantic concepts. Thus we design the loss function in the light of metric learning to measure semantic distance. The proposed model is evaluated on several well-known datasets. It is shown to be of higher perceptual quality and better diversity then existing generative models.","PeriodicalId":6474,"journal":{"name":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"16 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Conditional image generation using feature-matching GAN\",\"authors\":\"Yuzhong Liu, Qiyang Zhao, Cheng Jiang\",\"doi\":\"10.1109/CISP-BMEI.2017.8302049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative Adversarial Net is a frontier method of generative models for images, audios and videos. In this paper, we focus on conditional image generation and introduce conditional Feature-Matching Generative Adversarial Net to generate images from category labels. By visualizing state-of-art discriminative conditional generative models, we find these networks do not gain clear semantic concepts. Thus we design the loss function in the light of metric learning to measure semantic distance. The proposed model is evaluated on several well-known datasets. It is shown to be of higher perceptual quality and better diversity then existing generative models.\",\"PeriodicalId\":6474,\"journal\":{\"name\":\"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"16 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI.2017.8302049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2017.8302049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

生成对抗网络是图像、音频和视频生成模型的前沿方法。本文主要研究条件图像生成,并引入条件特征匹配生成对抗网络从类别标签生成图像。通过可视化最先进的判别条件生成模型,我们发现这些网络没有获得清晰的语义概念。因此,我们设计了度量学习的损失函数来度量语义距离。在几个已知的数据集上对该模型进行了评估。与现有的生成模型相比,该模型具有更高的感知质量和更好的多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conditional image generation using feature-matching GAN
Generative Adversarial Net is a frontier method of generative models for images, audios and videos. In this paper, we focus on conditional image generation and introduce conditional Feature-Matching Generative Adversarial Net to generate images from category labels. By visualizing state-of-art discriminative conditional generative models, we find these networks do not gain clear semantic concepts. Thus we design the loss function in the light of metric learning to measure semantic distance. The proposed model is evaluated on several well-known datasets. It is shown to be of higher perceptual quality and better diversity then existing generative models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信