高局域场的Schmid公式

IF 0.3 4区 数学 Q4 MATHEMATICS
M. Schmidt
{"title":"高局域场的Schmid公式","authors":"M. Schmidt","doi":"10.5802/jtnb.1125","DOIUrl":null,"url":null,"abstract":"In local class field theory, the Schmid–Witt symbol encodes interesting data about the ramification theory of p-extensi-ons of K and can, for example, be used to compute the higher ramification groups of such extensions. In 1936, Schmid discovered an explicit formula for the Schmid–Witt symbol of Artin–Schreier extensions of local fields. Later, his formula was generalized to Artin–Schreier–Witt extensions, but still over a local field. In this paper we generalize Schmid’s formula to compute the Artin–Schreier–Witt– Parshin symbol for Artin–Schreier–Witt extensions of two-dimensional local fields of positive characteristic.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":"6 1","pages":"355-371"},"PeriodicalIF":0.3000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schmid’s Formula for Higher Local Fields\",\"authors\":\"M. Schmidt\",\"doi\":\"10.5802/jtnb.1125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In local class field theory, the Schmid–Witt symbol encodes interesting data about the ramification theory of p-extensi-ons of K and can, for example, be used to compute the higher ramification groups of such extensions. In 1936, Schmid discovered an explicit formula for the Schmid–Witt symbol of Artin–Schreier extensions of local fields. Later, his formula was generalized to Artin–Schreier–Witt extensions, but still over a local field. In this paper we generalize Schmid’s formula to compute the Artin–Schreier–Witt– Parshin symbol for Artin–Schreier–Witt extensions of two-dimensional local fields of positive characteristic.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\"6 1\",\"pages\":\"355-371\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1125\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1125","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在局部类场论中,Schmid-Witt符号编码了关于K的p扩展子的分支理论的有趣数据,例如,可以用来计算这些扩展的高分支群。1936年,Schmid发现了局部场的Artin-Schreier扩展的Schmid - witt符号的显式公式。后来,他的公式被推广到Artin-Schreier-Witt扩展,但仍然适用于局部域。本文将Schmid公式推广到二维正特征局部域的Artin-Schreier-Witt扩展的Artin-Schreier-Witt - Parshin符号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Schmid’s Formula for Higher Local Fields
In local class field theory, the Schmid–Witt symbol encodes interesting data about the ramification theory of p-extensi-ons of K and can, for example, be used to compute the higher ramification groups of such extensions. In 1936, Schmid discovered an explicit formula for the Schmid–Witt symbol of Artin–Schreier extensions of local fields. Later, his formula was generalized to Artin–Schreier–Witt extensions, but still over a local field. In this paper we generalize Schmid’s formula to compute the Artin–Schreier–Witt– Parshin symbol for Artin–Schreier–Witt extensions of two-dimensional local fields of positive characteristic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信