用欧拉格式和有限差分格式研究常微分方程和偏微分方程数值解的稳定性判据

Pub Date : 2022-06-01 DOI:10.4208/jpde.v35.n3.6
Najmuddin Ahmad null, Shiv Charan
{"title":"用欧拉格式和有限差分格式研究常微分方程和偏微分方程数值解的稳定性判据","authors":"Najmuddin Ahmad null, Shiv Charan","doi":"10.4208/jpde.v35.n3.6","DOIUrl":null,"url":null,"abstract":". In this paper we have discussed solution and stability analysis of ordinary and partial differential equation with boundary value problem. We investigated pe-riodic stability in Eulers scheme and also discussed PDEs by finite difference scheme. Numerical example has been discussed finding nature of stability. All given result more accurate other than existing methods.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Stability Criteria of Numerical Solution of Ordinary and Partial Differential Equations Using Euler’s and Finite Difference Scheme\",\"authors\":\"Najmuddin Ahmad null, Shiv Charan\",\"doi\":\"10.4208/jpde.v35.n3.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper we have discussed solution and stability analysis of ordinary and partial differential equation with boundary value problem. We investigated pe-riodic stability in Eulers scheme and also discussed PDEs by finite difference scheme. Numerical example has been discussed finding nature of stability. All given result more accurate other than existing methods.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jpde.v35.n3.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jpde.v35.n3.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 本文讨论了带边值问题的常微分方程和偏微分方程的解及其稳定性分析。研究了欧拉格式的周期稳定性,并用有限差分格式讨论了偏微分方程的周期稳定性。讨论了数值算例,找出了稳定性的性质。所得结果比现有方法更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Study of Stability Criteria of Numerical Solution of Ordinary and Partial Differential Equations Using Euler’s and Finite Difference Scheme
. In this paper we have discussed solution and stability analysis of ordinary and partial differential equation with boundary value problem. We investigated pe-riodic stability in Eulers scheme and also discussed PDEs by finite difference scheme. Numerical example has been discussed finding nature of stability. All given result more accurate other than existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信