{"title":"非凸优化问题的二元算法:对非线性斯托克斯问题的应用","authors":"Nadia Raïssi, Mustapha Serhani","doi":"10.1016/S0764-4442(01)02130-9","DOIUrl":null,"url":null,"abstract":"<div><p>We apply a duality method for solving a nonconvex optimization problem. We construct an algorithm converging to a <em>∂</em>-critical point and we establish the relationship with critical point of the primal problem. The application of this method to a nonlinear Stokes problem leads to a weak solution.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 8","pages":"Pages 801-806"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02130-9","citationCount":"0","resultStr":"{\"title\":\"Algorithme de dualité pour un problème d'optimisation non convexe : application à un problème de Stokes non linéaire∗\",\"authors\":\"Nadia Raïssi, Mustapha Serhani\",\"doi\":\"10.1016/S0764-4442(01)02130-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We apply a duality method for solving a nonconvex optimization problem. We construct an algorithm converging to a <em>∂</em>-critical point and we establish the relationship with critical point of the primal problem. The application of this method to a nonlinear Stokes problem leads to a weak solution.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 8\",\"pages\":\"Pages 801-806\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02130-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Algorithme de dualité pour un problème d'optimisation non convexe : application à un problème de Stokes non linéaire∗
We apply a duality method for solving a nonconvex optimization problem. We construct an algorithm converging to a ∂-critical point and we establish the relationship with critical point of the primal problem. The application of this method to a nonlinear Stokes problem leads to a weak solution.