拐角问题为边界积分法

IF 1.1 Q3 ENGINEERING, CIVIL
R. J. Sobey
{"title":"拐角问题为边界积分法","authors":"R. J. Sobey","doi":"10.1680/jencm.22.00046","DOIUrl":null,"url":null,"abstract":"A review of existing approaches to the accommodation of discontinuous corners in the boundary integral method highlights difficulties with corner-adjacent panel integration. An extended Laplace corner wedge is introduced to resolve these impediments, based on a bi-cubic approximation to the corner and corner-adjacent nodes. Numerical experiments demonstrate the excellent precision of the methodology.","PeriodicalId":54061,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corner problem for the boundary integral method\",\"authors\":\"R. J. Sobey\",\"doi\":\"10.1680/jencm.22.00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A review of existing approaches to the accommodation of discontinuous corners in the boundary integral method highlights difficulties with corner-adjacent panel integration. An extended Laplace corner wedge is introduced to resolve these impediments, based on a bi-cubic approximation to the corner and corner-adjacent nodes. Numerical experiments demonstrate the excellent precision of the methodology.\",\"PeriodicalId\":54061,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jencm.22.00046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jencm.22.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

对现有的边界积分方法中对不连续角的容错方法进行了回顾,强调了角相邻面板积分的困难。引入了一个扩展的拉普拉斯角楔来解决这些障碍,基于对角节点和角相邻节点的双三次近似。数值实验证明了该方法具有良好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Corner problem for the boundary integral method
A review of existing approaches to the accommodation of discontinuous corners in the boundary integral method highlights difficulties with corner-adjacent panel integration. An extended Laplace corner wedge is introduced to resolve these impediments, based on a bi-cubic approximation to the corner and corner-adjacent nodes. Numerical experiments demonstrate the excellent precision of the methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信