{"title":"扭转阿贝尔群交换自同态的代数熵","authors":"A. Biś, D. Dikranjan, A. Bruno, L. Stoyanov","doi":"10.4171/rsmup/55","DOIUrl":null,"url":null,"abstract":"For actions of m commuting endomorphisms of a torsion abelian group we compute the algebraic entropy and the algebraic receptive entropy, showing that the latter one takes finite positive values in many cases when the former one vanishes. Mathematics Subject Classification (2010). 20M10, 20K30, 22A26, 22D05.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"140 1","pages":"45-60"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Algebraic entropies of commuting endomorphisms of torsion abelian groups\",\"authors\":\"A. Biś, D. Dikranjan, A. Bruno, L. Stoyanov\",\"doi\":\"10.4171/rsmup/55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For actions of m commuting endomorphisms of a torsion abelian group we compute the algebraic entropy and the algebraic receptive entropy, showing that the latter one takes finite positive values in many cases when the former one vanishes. Mathematics Subject Classification (2010). 20M10, 20K30, 22A26, 22D05.\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"140 1\",\"pages\":\"45-60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Algebraic entropies of commuting endomorphisms of torsion abelian groups
For actions of m commuting endomorphisms of a torsion abelian group we compute the algebraic entropy and the algebraic receptive entropy, showing that the latter one takes finite positive values in many cases when the former one vanishes. Mathematics Subject Classification (2010). 20M10, 20K30, 22A26, 22D05.