人力动力车辆阻力系数CFD分析及风洞试验

T. Estrada, K. Anderson, Ivan Gundersen, Chuck Johnston
{"title":"人力动力车辆阻力系数CFD分析及风洞试验","authors":"T. Estrada, K. Anderson, Ivan Gundersen, Chuck Johnston","doi":"10.1115/fedsm2021-65393","DOIUrl":null,"url":null,"abstract":"\n This paper presents results of Computational Fluid Dynamics (CFD) modeling and experimental wind tunnel testing to predict the drag coefficient for a Human Powered Vehicle (HPV) entered in the World Human Powered Speed Challenge (WHPSC). Herein, a comparison of CFD to wind tunnel test data is presented for ten different HPV designs. The current study reveals that streamlining the nose cone, tail cone, and wheel housing allows for a reduction of drag forces in critical areas, and a reduced drag coefficient. This allows for a selection to be made during the design phase, prior to manufacturing. Drag coefficients were found to be in the range of 0.133 < CD < 0.273, depending on the type of HPV considered. Wind tunnel testing was performed on scale models of the HPV showing agreement to the CFD results on average to within 16%. The wind tunnel testing showed a 7.7% decrease in drag coefficient from the baseline HPV of 2019 to the baseline HPV of 2020. Thus, the wind tunnel data supported by CFD analysis was used to assist in the design of the HPV.","PeriodicalId":23636,"journal":{"name":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD Analysis and Wind Tunnel Testing of Human Powered Vehicle Drag Coefficients\",\"authors\":\"T. Estrada, K. Anderson, Ivan Gundersen, Chuck Johnston\",\"doi\":\"10.1115/fedsm2021-65393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents results of Computational Fluid Dynamics (CFD) modeling and experimental wind tunnel testing to predict the drag coefficient for a Human Powered Vehicle (HPV) entered in the World Human Powered Speed Challenge (WHPSC). Herein, a comparison of CFD to wind tunnel test data is presented for ten different HPV designs. The current study reveals that streamlining the nose cone, tail cone, and wheel housing allows for a reduction of drag forces in critical areas, and a reduced drag coefficient. This allows for a selection to be made during the design phase, prior to manufacturing. Drag coefficients were found to be in the range of 0.133 < CD < 0.273, depending on the type of HPV considered. Wind tunnel testing was performed on scale models of the HPV showing agreement to the CFD results on average to within 16%. The wind tunnel testing showed a 7.7% decrease in drag coefficient from the baseline HPV of 2019 to the baseline HPV of 2020. Thus, the wind tunnel data supported by CFD analysis was used to assist in the design of the HPV.\",\"PeriodicalId\":23636,\"journal\":{\"name\":\"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/fedsm2021-65393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2021-65393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一辆参加世界人类动力速度挑战赛(WHPSC)的人类动力汽车(HPV)的计算流体力学(CFD)建模和风洞试验结果。本文对10种不同的HPV设计进行了CFD与风洞试验数据的比较。目前的研究表明,流线型的前锥、尾锥和轮壳可以减少关键区域的阻力,并降低阻力系数。这允许在设计阶段进行选择,在制造之前。阻力系数的范围为0.133 < CD < 0.273,取决于所考虑的HPV类型。在HPV的比例模型上进行风洞测试,结果显示与CFD结果的一致性平均在16%以内。风洞测试显示,从2019年的基线HPV到2020年的基线HPV,阻力系数下降了7.7%。因此,利用CFD分析支持的风洞数据来辅助HPV的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CFD Analysis and Wind Tunnel Testing of Human Powered Vehicle Drag Coefficients
This paper presents results of Computational Fluid Dynamics (CFD) modeling and experimental wind tunnel testing to predict the drag coefficient for a Human Powered Vehicle (HPV) entered in the World Human Powered Speed Challenge (WHPSC). Herein, a comparison of CFD to wind tunnel test data is presented for ten different HPV designs. The current study reveals that streamlining the nose cone, tail cone, and wheel housing allows for a reduction of drag forces in critical areas, and a reduced drag coefficient. This allows for a selection to be made during the design phase, prior to manufacturing. Drag coefficients were found to be in the range of 0.133 < CD < 0.273, depending on the type of HPV considered. Wind tunnel testing was performed on scale models of the HPV showing agreement to the CFD results on average to within 16%. The wind tunnel testing showed a 7.7% decrease in drag coefficient from the baseline HPV of 2019 to the baseline HPV of 2020. Thus, the wind tunnel data supported by CFD analysis was used to assist in the design of the HPV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信