{"title":"椭圆曲线上群律的无计算机辅助论证的初等线性代数证明","authors":"K. Nuida","doi":"10.1142/S2661335221500015","DOIUrl":null,"url":null,"abstract":"The group structure on the rational points of elliptic curves plays several important roles, in mathematics and recently also in other areas such as cryptography. However, the famous proofs for the group property (in particular, for its associative law) require somewhat advanced mathematics and therefore are not easily accessible by non-mathematician. On the other hand, there have been attempts in the literature to give an elementary proof, but those rely on computer-aided calculation for some part in their proofs. In this paper, we give a self-contained proof of the associative law for this operation, assuming mathematical knowledge only at the level of basic linear algebra and not requiring computer-aided arguments.","PeriodicalId":34218,"journal":{"name":"International Journal of Mathematics for Industry","volume":"29 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An elementary linear-algebraic proof without computer-aided arguments for the group law on elliptic curves\",\"authors\":\"K. Nuida\",\"doi\":\"10.1142/S2661335221500015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The group structure on the rational points of elliptic curves plays several important roles, in mathematics and recently also in other areas such as cryptography. However, the famous proofs for the group property (in particular, for its associative law) require somewhat advanced mathematics and therefore are not easily accessible by non-mathematician. On the other hand, there have been attempts in the literature to give an elementary proof, but those rely on computer-aided calculation for some part in their proofs. In this paper, we give a self-contained proof of the associative law for this operation, assuming mathematical knowledge only at the level of basic linear algebra and not requiring computer-aided arguments.\",\"PeriodicalId\":34218,\"journal\":{\"name\":\"International Journal of Mathematics for Industry\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics for Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2661335221500015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics for Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2661335221500015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An elementary linear-algebraic proof without computer-aided arguments for the group law on elliptic curves
The group structure on the rational points of elliptic curves plays several important roles, in mathematics and recently also in other areas such as cryptography. However, the famous proofs for the group property (in particular, for its associative law) require somewhat advanced mathematics and therefore are not easily accessible by non-mathematician. On the other hand, there have been attempts in the literature to give an elementary proof, but those rely on computer-aided calculation for some part in their proofs. In this paper, we give a self-contained proof of the associative law for this operation, assuming mathematical knowledge only at the level of basic linear algebra and not requiring computer-aided arguments.