Yeongseok Jeong, M. Kwon, Jinsup Kim, Gwang-sik Nam
{"title":"外粘接l型玻璃钢板梁的弯曲性能评价","authors":"Yeongseok Jeong, M. Kwon, Jinsup Kim, Gwang-sik Nam","doi":"10.5762/KAIS.2020.21.11.86","DOIUrl":null,"url":null,"abstract":"The demand for maintenance in Korea infrastructure facilities constructed since the 1970s has increased significantly compared to the demand for new construction. Moreover, after the Gyeongju and Pohang earthquakes, seismic performance evaluation, repair, and retrofitting projects have been carried out. Therefore, in this study, a specimen was designed following the L-type GFRP Plate Externally Bonded Retrofit method, one among other retrofit methods. The L-type GFRP Plate was bonded to the specimen by epoxy and a washered steel nail. A four-point bending test was performed to confirm the strengthening effect of the Externally Bonded Retrofit method using an L-type GFRP Plate. The strengthening effect of the L-type GFRP plate was proven experimentally, and the behavior of the beam designed following the L-type GFRP Plate Externally Bonded Retrofit method was evaluated according to Korea's \"Design Manual & Specification for Strengthening of RC Structures by Advanced Composites System\". Furthermore, the effectiveness of the bonding method, a combination of epoxy and washered steel nail, was also checked. The results showed that the design, according to the guidelines mentioned above, predicted the strength of the member well, but the failure mode did not satisfy the design assumption because of unexpected damage to the GFRP plate due to the fixing method, washered steel nail.","PeriodicalId":23087,"journal":{"name":"The Korea Academia-Industrial cooperation Society","volume":"47 1","pages":"86-93"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Beam Behavior with External Bonded L-type GFRP Plate through bending Test\",\"authors\":\"Yeongseok Jeong, M. Kwon, Jinsup Kim, Gwang-sik Nam\",\"doi\":\"10.5762/KAIS.2020.21.11.86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand for maintenance in Korea infrastructure facilities constructed since the 1970s has increased significantly compared to the demand for new construction. Moreover, after the Gyeongju and Pohang earthquakes, seismic performance evaluation, repair, and retrofitting projects have been carried out. Therefore, in this study, a specimen was designed following the L-type GFRP Plate Externally Bonded Retrofit method, one among other retrofit methods. The L-type GFRP Plate was bonded to the specimen by epoxy and a washered steel nail. A four-point bending test was performed to confirm the strengthening effect of the Externally Bonded Retrofit method using an L-type GFRP Plate. The strengthening effect of the L-type GFRP plate was proven experimentally, and the behavior of the beam designed following the L-type GFRP Plate Externally Bonded Retrofit method was evaluated according to Korea's \\\"Design Manual & Specification for Strengthening of RC Structures by Advanced Composites System\\\". Furthermore, the effectiveness of the bonding method, a combination of epoxy and washered steel nail, was also checked. The results showed that the design, according to the guidelines mentioned above, predicted the strength of the member well, but the failure mode did not satisfy the design assumption because of unexpected damage to the GFRP plate due to the fixing method, washered steel nail.\",\"PeriodicalId\":23087,\"journal\":{\"name\":\"The Korea Academia-Industrial cooperation Society\",\"volume\":\"47 1\",\"pages\":\"86-93\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Korea Academia-Industrial cooperation Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5762/KAIS.2020.21.11.86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Korea Academia-Industrial cooperation Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5762/KAIS.2020.21.11.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of Beam Behavior with External Bonded L-type GFRP Plate through bending Test
The demand for maintenance in Korea infrastructure facilities constructed since the 1970s has increased significantly compared to the demand for new construction. Moreover, after the Gyeongju and Pohang earthquakes, seismic performance evaluation, repair, and retrofitting projects have been carried out. Therefore, in this study, a specimen was designed following the L-type GFRP Plate Externally Bonded Retrofit method, one among other retrofit methods. The L-type GFRP Plate was bonded to the specimen by epoxy and a washered steel nail. A four-point bending test was performed to confirm the strengthening effect of the Externally Bonded Retrofit method using an L-type GFRP Plate. The strengthening effect of the L-type GFRP plate was proven experimentally, and the behavior of the beam designed following the L-type GFRP Plate Externally Bonded Retrofit method was evaluated according to Korea's "Design Manual & Specification for Strengthening of RC Structures by Advanced Composites System". Furthermore, the effectiveness of the bonding method, a combination of epoxy and washered steel nail, was also checked. The results showed that the design, according to the guidelines mentioned above, predicted the strength of the member well, but the failure mode did not satisfy the design assumption because of unexpected damage to the GFRP plate due to the fixing method, washered steel nail.