Ganga R. Neupane, A. Kaphle, D. Mcllroy, E. Echeverria, P. Sankaran, P. Hari
{"title":"沉淀法和微波法制备的铁氧化锌纳米颗粒的结构、光学和电学性能的比较研究","authors":"Ganga R. Neupane, A. Kaphle, D. Mcllroy, E. Echeverria, P. Sankaran, P. Hari","doi":"10.21926/jept.2103035","DOIUrl":null,"url":null,"abstract":"Iron doped ZnO (Fe-ZnO) nanoparticles were synthesized using two techniques that are economical as well as scalable to yield tunable properties of nanoparticles for facilitating down conversion in an absorbing layer of a solar cell. To evaluate the suitability of Fe-ZnO nanoparticles prepared by two deposition methods, we present a comparison of optical, electrical, and structural properties of Fe-ZnO using several experimental techniques. Structural properties were analyzed using transmission electron microscopy and x-ray diffraction spectroscopy (XRD) with Rietveld analysis for extracting information on compositional variations with Fe doping. The chemical composition of nanoparticles was analyzed through X-ray photoelectron spectroscopy (XPS). The optical properties of nanoparticles were studied using photoluminescence and UV-Vis absorption spectroscopy. In addition, fluorescence lifetime measurement was also performed to study the changes in an exponential decay of lifetimes. The electrical transport properties of Fe-ZnO were analyzed by impedance spectroscopy. Our studies indicate that ethanol as a solvent in a microwave method would produce smaller nanoparticles up to the size of 11 nm. In contrast, the precipitation method produces secondary phases of Fe2O3 beyond 5% doping. In addition, our studies show that the optical and electrical properties of resulting Fe-ZnO nanoparticles depend on the particle sizes and the synthesis techniques used. These new results provide insight into the role of solvents in fabricating Fe-ZnO nanoparticles by precipitation and microwave methods for photovoltaic and other applications.","PeriodicalId":53427,"journal":{"name":"Journal of Nuclear Energy Science and Power Generation Technology","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study of Structural, Optical and Electrical Properties of Fe-ZnO Nanoparticles Synthesized by Precipitation and Microwave Method for Photovoltaic Applications\",\"authors\":\"Ganga R. Neupane, A. Kaphle, D. Mcllroy, E. Echeverria, P. Sankaran, P. Hari\",\"doi\":\"10.21926/jept.2103035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iron doped ZnO (Fe-ZnO) nanoparticles were synthesized using two techniques that are economical as well as scalable to yield tunable properties of nanoparticles for facilitating down conversion in an absorbing layer of a solar cell. To evaluate the suitability of Fe-ZnO nanoparticles prepared by two deposition methods, we present a comparison of optical, electrical, and structural properties of Fe-ZnO using several experimental techniques. Structural properties were analyzed using transmission electron microscopy and x-ray diffraction spectroscopy (XRD) with Rietveld analysis for extracting information on compositional variations with Fe doping. The chemical composition of nanoparticles was analyzed through X-ray photoelectron spectroscopy (XPS). The optical properties of nanoparticles were studied using photoluminescence and UV-Vis absorption spectroscopy. In addition, fluorescence lifetime measurement was also performed to study the changes in an exponential decay of lifetimes. The electrical transport properties of Fe-ZnO were analyzed by impedance spectroscopy. Our studies indicate that ethanol as a solvent in a microwave method would produce smaller nanoparticles up to the size of 11 nm. In contrast, the precipitation method produces secondary phases of Fe2O3 beyond 5% doping. In addition, our studies show that the optical and electrical properties of resulting Fe-ZnO nanoparticles depend on the particle sizes and the synthesis techniques used. These new results provide insight into the role of solvents in fabricating Fe-ZnO nanoparticles by precipitation and microwave methods for photovoltaic and other applications.\",\"PeriodicalId\":53427,\"journal\":{\"name\":\"Journal of Nuclear Energy Science and Power Generation Technology\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Energy Science and Power Generation Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/jept.2103035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Energy Science and Power Generation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/jept.2103035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
A Comparative Study of Structural, Optical and Electrical Properties of Fe-ZnO Nanoparticles Synthesized by Precipitation and Microwave Method for Photovoltaic Applications
Iron doped ZnO (Fe-ZnO) nanoparticles were synthesized using two techniques that are economical as well as scalable to yield tunable properties of nanoparticles for facilitating down conversion in an absorbing layer of a solar cell. To evaluate the suitability of Fe-ZnO nanoparticles prepared by two deposition methods, we present a comparison of optical, electrical, and structural properties of Fe-ZnO using several experimental techniques. Structural properties were analyzed using transmission electron microscopy and x-ray diffraction spectroscopy (XRD) with Rietveld analysis for extracting information on compositional variations with Fe doping. The chemical composition of nanoparticles was analyzed through X-ray photoelectron spectroscopy (XPS). The optical properties of nanoparticles were studied using photoluminescence and UV-Vis absorption spectroscopy. In addition, fluorescence lifetime measurement was also performed to study the changes in an exponential decay of lifetimes. The electrical transport properties of Fe-ZnO were analyzed by impedance spectroscopy. Our studies indicate that ethanol as a solvent in a microwave method would produce smaller nanoparticles up to the size of 11 nm. In contrast, the precipitation method produces secondary phases of Fe2O3 beyond 5% doping. In addition, our studies show that the optical and electrical properties of resulting Fe-ZnO nanoparticles depend on the particle sizes and the synthesis techniques used. These new results provide insight into the role of solvents in fabricating Fe-ZnO nanoparticles by precipitation and microwave methods for photovoltaic and other applications.