{"title":"纳米颗粒稳定强泡沫提高高矿化度裂缝性碳酸盐岩储层采收率","authors":"Wang Xuezhen, Mohanty K Kishore","doi":"10.2118/209435-ms","DOIUrl":null,"url":null,"abstract":"\n Foam flooding can minimize bypassing in gas floods in fractured reservoirs. Finding a good foam formulation to apply in high salinity reservoirs is challenging, especially with divalent cations, e.g., API brine (8% NaCl with 2% CaCl2). When formulating with nanoparticles, the colloidal dispersion stability is difficult due to the dramatic reduction of the Debye length at high salinity. The aim of this work was to develop a strong foam in API brine, using nonionic surfactant (SF) and ethyl cellulose nanoparticles (ECNP), for gas flooding in fractured carbonate reservoirs. ECNP particles were synthesized and dispersed in API brine using a nonionic surfactant (SF). SF and SF/ECNP foams were created and their stability was studied at atmospheric pressure and 950 psi. Foam mobility was measured in a sand pack at the high pressure. Foam flood experiments were conducted in oil saturated fractured carbonate cores. The nonionic surfactant was proven to be a good dispersion agent for ECNP in API brine. Moreover, the SF-ECNP stabilized foam in API brine, even in the presence of oil. The foam was found to be shear-thinning during flow through sand packs. Core floods showed that SF/ECNP foam recovered 81.6% of the oil from the matrix, 13.8% more oil than the surfactant only foam, indicating the synergy between ECNP and surfactant. ECNP accumulates in the foam lamella and induces larger pressure gradients in the fracture to divert more gas into the matrix for oil displacement.","PeriodicalId":10935,"journal":{"name":"Day 1 Mon, April 25, 2022","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoparticle Stabilized Strong Foam for EOR in High Salinity Fractured Carbonate Reservoirs\",\"authors\":\"Wang Xuezhen, Mohanty K Kishore\",\"doi\":\"10.2118/209435-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Foam flooding can minimize bypassing in gas floods in fractured reservoirs. Finding a good foam formulation to apply in high salinity reservoirs is challenging, especially with divalent cations, e.g., API brine (8% NaCl with 2% CaCl2). When formulating with nanoparticles, the colloidal dispersion stability is difficult due to the dramatic reduction of the Debye length at high salinity. The aim of this work was to develop a strong foam in API brine, using nonionic surfactant (SF) and ethyl cellulose nanoparticles (ECNP), for gas flooding in fractured carbonate reservoirs. ECNP particles were synthesized and dispersed in API brine using a nonionic surfactant (SF). SF and SF/ECNP foams were created and their stability was studied at atmospheric pressure and 950 psi. Foam mobility was measured in a sand pack at the high pressure. Foam flood experiments were conducted in oil saturated fractured carbonate cores. The nonionic surfactant was proven to be a good dispersion agent for ECNP in API brine. Moreover, the SF-ECNP stabilized foam in API brine, even in the presence of oil. The foam was found to be shear-thinning during flow through sand packs. Core floods showed that SF/ECNP foam recovered 81.6% of the oil from the matrix, 13.8% more oil than the surfactant only foam, indicating the synergy between ECNP and surfactant. ECNP accumulates in the foam lamella and induces larger pressure gradients in the fracture to divert more gas into the matrix for oil displacement.\",\"PeriodicalId\":10935,\"journal\":{\"name\":\"Day 1 Mon, April 25, 2022\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, April 25, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/209435-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, April 25, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/209435-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanoparticle Stabilized Strong Foam for EOR in High Salinity Fractured Carbonate Reservoirs
Foam flooding can minimize bypassing in gas floods in fractured reservoirs. Finding a good foam formulation to apply in high salinity reservoirs is challenging, especially with divalent cations, e.g., API brine (8% NaCl with 2% CaCl2). When formulating with nanoparticles, the colloidal dispersion stability is difficult due to the dramatic reduction of the Debye length at high salinity. The aim of this work was to develop a strong foam in API brine, using nonionic surfactant (SF) and ethyl cellulose nanoparticles (ECNP), for gas flooding in fractured carbonate reservoirs. ECNP particles were synthesized and dispersed in API brine using a nonionic surfactant (SF). SF and SF/ECNP foams were created and their stability was studied at atmospheric pressure and 950 psi. Foam mobility was measured in a sand pack at the high pressure. Foam flood experiments were conducted in oil saturated fractured carbonate cores. The nonionic surfactant was proven to be a good dispersion agent for ECNP in API brine. Moreover, the SF-ECNP stabilized foam in API brine, even in the presence of oil. The foam was found to be shear-thinning during flow through sand packs. Core floods showed that SF/ECNP foam recovered 81.6% of the oil from the matrix, 13.8% more oil than the surfactant only foam, indicating the synergy between ECNP and surfactant. ECNP accumulates in the foam lamella and induces larger pressure gradients in the fracture to divert more gas into the matrix for oil displacement.