{"title":"椭圆界面问题的高阶浸入杂化差分法","authors":"Y. Jeon","doi":"10.1515/jnma-2023-0011","DOIUrl":null,"url":null,"abstract":"Abstract We propose high order conforming and nonconforming immersed hybridized difference (IHD) methods in two and three dimensions for elliptic interface problems. Introducing the virtual to real transformation (VRT), we could obtain a systematic and unique way of deriving arbitrary high order methods in principle. The optimal number of collocating points for imposing interface conditions is proved, and a unique way of constructing the VRT is suggested. Numerical experiments are performed in two and three dimensions. Numerical results achieving up to the 6th order convergence in the L2-norm are presented for the two dimensional case, and a three dimensional example with a 4th order convergence is presented.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High order immersed hybridized difference methods for elliptic interface problems\",\"authors\":\"Y. Jeon\",\"doi\":\"10.1515/jnma-2023-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We propose high order conforming and nonconforming immersed hybridized difference (IHD) methods in two and three dimensions for elliptic interface problems. Introducing the virtual to real transformation (VRT), we could obtain a systematic and unique way of deriving arbitrary high order methods in principle. The optimal number of collocating points for imposing interface conditions is proved, and a unique way of constructing the VRT is suggested. Numerical experiments are performed in two and three dimensions. Numerical results achieving up to the 6th order convergence in the L2-norm are presented for the two dimensional case, and a three dimensional example with a 4th order convergence is presented.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2023-0011\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2023-0011","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
High order immersed hybridized difference methods for elliptic interface problems
Abstract We propose high order conforming and nonconforming immersed hybridized difference (IHD) methods in two and three dimensions for elliptic interface problems. Introducing the virtual to real transformation (VRT), we could obtain a systematic and unique way of deriving arbitrary high order methods in principle. The optimal number of collocating points for imposing interface conditions is proved, and a unique way of constructing the VRT is suggested. Numerical experiments are performed in two and three dimensions. Numerical results achieving up to the 6th order convergence in the L2-norm are presented for the two dimensional case, and a three dimensional example with a 4th order convergence is presented.
期刊介绍:
The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.