对数Sobolev不等式和三次Schrödinger方程的谱浓度

Pub Date : 2013-08-16 DOI:10.1080/17442508.2014.882924
G. Blower, C. Brett, I. Doust
{"title":"对数Sobolev不等式和三次Schrödinger方程的谱浓度","authors":"G. Blower, C. Brett, I. Doust","doi":"10.1080/17442508.2014.882924","DOIUrl":null,"url":null,"abstract":"The nonlinear Schrödinger equation , , arises from a Hamiltonian on infinite-dimensional phase space . For , Bourgain (Comm. Math. Phys. 166 (1994), 1–26) has shown that there exists a Gibbs measure on balls in phase space such that the Cauchy problem for is well posed on the support of , and that is invariant under the flow. This paper shows that satisfies a logarithmic Sobolev inequality (LSI) for the focusing case and on for all N>0; also satisfies a restricted LSI for on compact subsets of determined by Hölder norms. Hence for p = 4, the spectral data of the periodic Dirac operator in with random potential subject to are concentrated near to their mean values. The paper concludes with a similar result for the spectral data of Hill's equation when the potential is random and subject to the Gibbs measure of Korteweg–de Vries.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2013-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Logarithmic Sobolev inequalities and spectral concentration for the cubic Schrödinger equation\",\"authors\":\"G. Blower, C. Brett, I. Doust\",\"doi\":\"10.1080/17442508.2014.882924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonlinear Schrödinger equation , , arises from a Hamiltonian on infinite-dimensional phase space . For , Bourgain (Comm. Math. Phys. 166 (1994), 1–26) has shown that there exists a Gibbs measure on balls in phase space such that the Cauchy problem for is well posed on the support of , and that is invariant under the flow. This paper shows that satisfies a logarithmic Sobolev inequality (LSI) for the focusing case and on for all N>0; also satisfies a restricted LSI for on compact subsets of determined by Hölder norms. Hence for p = 4, the spectral data of the periodic Dirac operator in with random potential subject to are concentrated near to their mean values. The paper concludes with a similar result for the spectral data of Hill's equation when the potential is random and subject to the Gibbs measure of Korteweg–de Vries.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2013-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2014.882924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2014.882924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

非线性Schrödinger方程由无限维相空间上的哈密顿量产生。For, Bourgain (Comm. Math)。Phys. 166(1994), 1-26)证明了在相空间中球上存在一个吉布斯测度,使得柯西问题在的支持下被很好地提出,并且在流动下是不变的。本文证明了在聚焦情况下满足对数Sobolev不等式(LSI),在所有N>0的情况下满足对数Sobolev不等式;也满足由Hölder规范确定的紧子集的限制LSI。因此,当p = 4时,受随机势约束的周期狄拉克算子的谱数据集中在其均值附近。本文对希尔方程的谱数据作了类似的结论,当势是随机的,并服从Korteweg-de Vries的Gibbs测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Logarithmic Sobolev inequalities and spectral concentration for the cubic Schrödinger equation
The nonlinear Schrödinger equation , , arises from a Hamiltonian on infinite-dimensional phase space . For , Bourgain (Comm. Math. Phys. 166 (1994), 1–26) has shown that there exists a Gibbs measure on balls in phase space such that the Cauchy problem for is well posed on the support of , and that is invariant under the flow. This paper shows that satisfies a logarithmic Sobolev inequality (LSI) for the focusing case and on for all N>0; also satisfies a restricted LSI for on compact subsets of determined by Hölder norms. Hence for p = 4, the spectral data of the periodic Dirac operator in with random potential subject to are concentrated near to their mean values. The paper concludes with a similar result for the spectral data of Hill's equation when the potential is random and subject to the Gibbs measure of Korteweg–de Vries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信