基于计算记忆的深度神经网络推理与训练

A. Sebastian, I. Boybat, M. Dazzi, I. Giannopoulos, V. Jonnalagadda, V. Joshi, G. Karunaratne, B. Kersting, R. Khaddam-Aljameh, S. Nandakumar, A. Petropoulos, C. Piveteau, T. Antonakopoulos, B. Rajendran, M. L. Gallo, E. Eleftheriou
{"title":"基于计算记忆的深度神经网络推理与训练","authors":"A. Sebastian, I. Boybat, M. Dazzi, I. Giannopoulos, V. Jonnalagadda, V. Joshi, G. Karunaratne, B. Kersting, R. Khaddam-Aljameh, S. Nandakumar, A. Petropoulos, C. Piveteau, T. Antonakopoulos, B. Rajendran, M. L. Gallo, E. Eleftheriou","doi":"10.23919/VLSIT.2019.8776518","DOIUrl":null,"url":null,"abstract":"In-memory computing is an emerging computing paradigm where certain computational tasks are performed in place in a computational memory unit by exploiting the physical attributes of the memory devices. Here, we present an overview of the application of in-memory computing in deep learning, a branch of machine learning that has significantly contributed to the recent explosive growth in artificial intelligence. The methodology for both inference and training of deep neural networks is presented along with experimental results using phase-change memory (PCM) devices.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"22 1","pages":"T168-T169"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Computational memory-based inference and training of deep neural networks\",\"authors\":\"A. Sebastian, I. Boybat, M. Dazzi, I. Giannopoulos, V. Jonnalagadda, V. Joshi, G. Karunaratne, B. Kersting, R. Khaddam-Aljameh, S. Nandakumar, A. Petropoulos, C. Piveteau, T. Antonakopoulos, B. Rajendran, M. L. Gallo, E. Eleftheriou\",\"doi\":\"10.23919/VLSIT.2019.8776518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In-memory computing is an emerging computing paradigm where certain computational tasks are performed in place in a computational memory unit by exploiting the physical attributes of the memory devices. Here, we present an overview of the application of in-memory computing in deep learning, a branch of machine learning that has significantly contributed to the recent explosive growth in artificial intelligence. The methodology for both inference and training of deep neural networks is presented along with experimental results using phase-change memory (PCM) devices.\",\"PeriodicalId\":6752,\"journal\":{\"name\":\"2019 Symposium on VLSI Technology\",\"volume\":\"22 1\",\"pages\":\"T168-T169\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIT.2019.8776518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

内存计算是一种新兴的计算范式,其中某些计算任务通过利用内存设备的物理属性在计算内存单元中执行。在这里,我们概述了内存计算在深度学习中的应用,深度学习是机器学习的一个分支,它对最近人工智能的爆炸式增长做出了重大贡献。介绍了深度神经网络的推理和训练方法,并给出了使用相变存储器(PCM)器件的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational memory-based inference and training of deep neural networks
In-memory computing is an emerging computing paradigm where certain computational tasks are performed in place in a computational memory unit by exploiting the physical attributes of the memory devices. Here, we present an overview of the application of in-memory computing in deep learning, a branch of machine learning that has significantly contributed to the recent explosive growth in artificial intelligence. The methodology for both inference and training of deep neural networks is presented along with experimental results using phase-change memory (PCM) devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信