超常算子和$\ast $-超常算子交换元组的Weyl定理

N. Bala, G. Ramesh
{"title":"超常算子和$\\ast $-超常算子交换元组的Weyl定理","authors":"N. Bala, G. Ramesh","doi":"10.4064/ba210325-13-6","DOIUrl":null,"url":null,"abstract":"In this article, we show that a commuting pair $T=(T_1,T_2)$ of $\\ast$-paranormal operators $T_1$ and $T_2$ with quasitriangular property satisfy the Weyl's theorem-I, that is $$\\sigma_T(T)\\setminus\\sigma_{T_W}(T)=\\pi_{00}(T)$$ and a commuting pair of paranormal operators satisfy Weyl's theorem-II, that is $$\\sigma_T(T)\\setminus\\omega(T)=\\pi_{00}(T),$$ where $\\sigma_T(T),\\, \\sigma_{T_W}(T),\\,\\omega(T)$ and $\\pi_{00}(T)$ are the Taylor spectrum, the Taylor Weyl spectrum, the joint Weyl spectrum and the set consisting of isolated eigenvalues of $T$ with finite multiplicity, respectively. \nMoreover, we prove that Weyl's theorem-II holds for $f(T)$, where $T$ is a commuting pair of paranormal operators and $f$ is an analytic function in a neighbourhood of $\\sigma_T(T)$.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weyl’s theorem for commuting tuples ofparanormal and $\\\\ast $-paranormal operators\",\"authors\":\"N. Bala, G. Ramesh\",\"doi\":\"10.4064/ba210325-13-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we show that a commuting pair $T=(T_1,T_2)$ of $\\\\ast$-paranormal operators $T_1$ and $T_2$ with quasitriangular property satisfy the Weyl's theorem-I, that is $$\\\\sigma_T(T)\\\\setminus\\\\sigma_{T_W}(T)=\\\\pi_{00}(T)$$ and a commuting pair of paranormal operators satisfy Weyl's theorem-II, that is $$\\\\sigma_T(T)\\\\setminus\\\\omega(T)=\\\\pi_{00}(T),$$ where $\\\\sigma_T(T),\\\\, \\\\sigma_{T_W}(T),\\\\,\\\\omega(T)$ and $\\\\pi_{00}(T)$ are the Taylor spectrum, the Taylor Weyl spectrum, the joint Weyl spectrum and the set consisting of isolated eigenvalues of $T$ with finite multiplicity, respectively. \\nMoreover, we prove that Weyl's theorem-II holds for $f(T)$, where $T$ is a commuting pair of paranormal operators and $f$ is an analytic function in a neighbourhood of $\\\\sigma_T(T)$.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/ba210325-13-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/ba210325-13-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了具有拟三角形性质的$\ast$ -超常算子$T_1$和$T_2$的交换对$T=(T_1,T_2)$满足Weyl定理1,即$$\sigma_T(T)\setminus\sigma_{T_W}(T)=\pi_{00}(T)$$;超常算子的交换对满足Weyl定理2,即$$\sigma_T(T)\setminus\omega(T)=\pi_{00}(T),$$,其中$\sigma_T(T),\, \sigma_{T_W}(T),\,\omega(T)$和$\pi_{00}(T)$是Taylor谱,Taylor Weyl谱,联合Weyl谱和由孤立特征值组成的集$T$具有有限多重性。此外,我们证明了Weyl定理ii对于$f(T)$成立,其中$T$是一个超常算子的交换对,$f$是一个在$\sigma_T(T)$的邻域中的解析函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weyl’s theorem for commuting tuples ofparanormal and $\ast $-paranormal operators
In this article, we show that a commuting pair $T=(T_1,T_2)$ of $\ast$-paranormal operators $T_1$ and $T_2$ with quasitriangular property satisfy the Weyl's theorem-I, that is $$\sigma_T(T)\setminus\sigma_{T_W}(T)=\pi_{00}(T)$$ and a commuting pair of paranormal operators satisfy Weyl's theorem-II, that is $$\sigma_T(T)\setminus\omega(T)=\pi_{00}(T),$$ where $\sigma_T(T),\, \sigma_{T_W}(T),\,\omega(T)$ and $\pi_{00}(T)$ are the Taylor spectrum, the Taylor Weyl spectrum, the joint Weyl spectrum and the set consisting of isolated eigenvalues of $T$ with finite multiplicity, respectively. Moreover, we prove that Weyl's theorem-II holds for $f(T)$, where $T$ is a commuting pair of paranormal operators and $f$ is an analytic function in a neighbourhood of $\sigma_T(T)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信