{"title":"无线传感器网络(WSNs) Khalimsky拓扑协议中的空穴问题求解","authors":"Mahmoud Mezghani, Omnia Mezghani","doi":"10.1142/s0219265923500159","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an approach solving the holes problem in Wireless Sensor Networks (WSNs) based on Khalimsky k-Clustering and data routing protocol (MDKC). The aim of this solution is to establish optimized data routing paths between isolated nodes/clusters and the Sink in noisy environment with the presence of obstacles. This approach is an improvement of a previous work deploying stationary WSN not dealing with the problem of “holes”. At first, the MDKC algorithm divides the WSN into k-hop [Formula: see text] compact dynamic clusters. For each cluster, a node is elected cluster-head in its k-neighborhood according to some criteria such as the remaining energy, the k-degree and the communication probability average. Then, some nodes are selected as Khalimsky anchors to optimize the intra-cluster data routing process. The Khalimsky anchors at the border layers ensure the inter-cluster data routing between adjacent clusters. In the next phase of MDKC, Mobile Collectors (MCs) are used for data collecting and relaying from isolated nodes/clusters to the connected Khalimsky’s nodes. The simulation results prove that MDKC minimizes the energy consumption and improves the connectivity rate between sensors and the delivery rate compared to some existing approaches.","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":"40 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holes Problem Solving in Khalimsky Topology Protocol for Wireless Sensor Networks (WSNs)\",\"authors\":\"Mahmoud Mezghani, Omnia Mezghani\",\"doi\":\"10.1142/s0219265923500159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an approach solving the holes problem in Wireless Sensor Networks (WSNs) based on Khalimsky k-Clustering and data routing protocol (MDKC). The aim of this solution is to establish optimized data routing paths between isolated nodes/clusters and the Sink in noisy environment with the presence of obstacles. This approach is an improvement of a previous work deploying stationary WSN not dealing with the problem of “holes”. At first, the MDKC algorithm divides the WSN into k-hop [Formula: see text] compact dynamic clusters. For each cluster, a node is elected cluster-head in its k-neighborhood according to some criteria such as the remaining energy, the k-degree and the communication probability average. Then, some nodes are selected as Khalimsky anchors to optimize the intra-cluster data routing process. The Khalimsky anchors at the border layers ensure the inter-cluster data routing between adjacent clusters. In the next phase of MDKC, Mobile Collectors (MCs) are used for data collecting and relaying from isolated nodes/clusters to the connected Khalimsky’s nodes. The simulation results prove that MDKC minimizes the energy consumption and improves the connectivity rate between sensors and the delivery rate compared to some existing approaches.\",\"PeriodicalId\":53990,\"journal\":{\"name\":\"JOURNAL OF INTERCONNECTION NETWORKS\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF INTERCONNECTION NETWORKS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219265923500159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INTERCONNECTION NETWORKS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265923500159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Holes Problem Solving in Khalimsky Topology Protocol for Wireless Sensor Networks (WSNs)
In this paper, we propose an approach solving the holes problem in Wireless Sensor Networks (WSNs) based on Khalimsky k-Clustering and data routing protocol (MDKC). The aim of this solution is to establish optimized data routing paths between isolated nodes/clusters and the Sink in noisy environment with the presence of obstacles. This approach is an improvement of a previous work deploying stationary WSN not dealing with the problem of “holes”. At first, the MDKC algorithm divides the WSN into k-hop [Formula: see text] compact dynamic clusters. For each cluster, a node is elected cluster-head in its k-neighborhood according to some criteria such as the remaining energy, the k-degree and the communication probability average. Then, some nodes are selected as Khalimsky anchors to optimize the intra-cluster data routing process. The Khalimsky anchors at the border layers ensure the inter-cluster data routing between adjacent clusters. In the next phase of MDKC, Mobile Collectors (MCs) are used for data collecting and relaying from isolated nodes/clusters to the connected Khalimsky’s nodes. The simulation results prove that MDKC minimizes the energy consumption and improves the connectivity rate between sensors and the delivery rate compared to some existing approaches.
期刊介绍:
The Journal of Interconnection Networks (JOIN) is an international scientific journal dedicated to advancing the state-of-the-art of interconnection networks. The journal addresses all aspects of interconnection networks including their theory, analysis, design, implementation and application, and corresponding issues of communication, computing and function arising from (or applied to) a variety of multifaceted networks. Interconnection problems occur at different levels in the hardware and software design of communicating entities in integrated circuits, multiprocessors, multicomputers, and communication networks as diverse as telephone systems, cable network systems, computer networks, mobile communication networks, satellite network systems, the Internet and biological systems.