生物标志物检测算法和工具的新模型选择度量

IF 0.7 Q2 MATHEMATICS
Bo Feng, Yubo Sun, B. Zee
{"title":"生物标志物检测算法和工具的新模型选择度量","authors":"Bo Feng, Yubo Sun, B. Zee","doi":"10.1155/2023/8263804","DOIUrl":null,"url":null,"abstract":"In the era of precision medicine, biomarker plays a vital role in drug clinical trials. It helps select the patients more likely to respond to the therapy and increases the possibility of success of the trial. Model selection is critical in the development of the algorithm. Traditional model selection metrics ignore two clinical utilities of the biomarker in drug clinical trials, one is its ability to distinguish positive and negative patients in terms of treatment effect and another is the total cost of the biomarker-based drug clinical trial. We proposed a new model selection metric that estimates the above two clinical utilities of biomarker detection algorithms without the need for a real drug clinical trial. In the simulation, we will compare the proposed metric with the widely used ROC-based metric in selecting the optimal cutoff value for the model and discuss which one to choose under various circumstances.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Model Selection Metric for Biomarker Detection Algorithms and Tools\",\"authors\":\"Bo Feng, Yubo Sun, B. Zee\",\"doi\":\"10.1155/2023/8263804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the era of precision medicine, biomarker plays a vital role in drug clinical trials. It helps select the patients more likely to respond to the therapy and increases the possibility of success of the trial. Model selection is critical in the development of the algorithm. Traditional model selection metrics ignore two clinical utilities of the biomarker in drug clinical trials, one is its ability to distinguish positive and negative patients in terms of treatment effect and another is the total cost of the biomarker-based drug clinical trial. We proposed a new model selection metric that estimates the above two clinical utilities of biomarker detection algorithms without the need for a real drug clinical trial. In the simulation, we will compare the proposed metric with the widely used ROC-based metric in selecting the optimal cutoff value for the model and discuss which one to choose under various circumstances.\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8263804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8263804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在精准医学时代,生物标志物在药物临床试验中起着至关重要的作用。它有助于选择更有可能对治疗产生反应的患者,并增加试验成功的可能性。模型选择是算法开发的关键。传统的模型选择指标忽略了生物标志物在药物临床试验中的两个临床效用,一是区分阳性和阴性患者的治疗效果的能力,二是基于生物标志物的药物临床试验的总成本。我们提出了一种新的模型选择度量,可以在不需要真正的药物临床试验的情况下估计上述两种生物标志物检测算法的临床效用。在仿真中,我们将比较所提出的度量与广泛使用的基于roc的度量,以选择模型的最佳截止值,并讨论在各种情况下选择哪一个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Model Selection Metric for Biomarker Detection Algorithms and Tools
In the era of precision medicine, biomarker plays a vital role in drug clinical trials. It helps select the patients more likely to respond to the therapy and increases the possibility of success of the trial. Model selection is critical in the development of the algorithm. Traditional model selection metrics ignore two clinical utilities of the biomarker in drug clinical trials, one is its ability to distinguish positive and negative patients in terms of treatment effect and another is the total cost of the biomarker-based drug clinical trial. We proposed a new model selection metric that estimates the above two clinical utilities of biomarker detection algorithms without the need for a real drug clinical trial. In the simulation, we will compare the proposed metric with the widely used ROC-based metric in selecting the optimal cutoff value for the model and discuss which one to choose under various circumstances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信