DreamCoder:引导归纳程序合成与唤醒-睡眠库学习

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke B. Hewitt, Luc Cary, Armando Solar-Lezama, J. Tenenbaum
{"title":"DreamCoder:引导归纳程序合成与唤醒-睡眠库学习","authors":"Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke B. Hewitt, Luc Cary, Armando Solar-Lezama, J. Tenenbaum","doi":"10.1145/3453483.3454080","DOIUrl":null,"url":null,"abstract":"We present a system for inductive program synthesis called DreamCoder, which inputs a corpus of synthesis problems each specified by one or a few examples, and automatically derives a library of program components and a neural search policy that can be used to efficiently solve other similar synthesis problems. The library and search policy bootstrap each other iteratively through a variant of \"wake-sleep\" approximate Bayesian learning. A new refactoring algorithm based on E-graph matching identifies common sub-components across synthesized programs, building a progressively deepening library of abstractions capturing the structure of the input domain. We evaluate on eight domains including classic program synthesis areas and AI tasks such as planning, inverse graphics, and equation discovery. We show that jointly learning the library and neural search policy leads to solving more problems, and solving them more quickly.","PeriodicalId":20557,"journal":{"name":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":"{\"title\":\"DreamCoder: bootstrapping inductive program synthesis with wake-sleep library learning\",\"authors\":\"Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke B. Hewitt, Luc Cary, Armando Solar-Lezama, J. Tenenbaum\",\"doi\":\"10.1145/3453483.3454080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a system for inductive program synthesis called DreamCoder, which inputs a corpus of synthesis problems each specified by one or a few examples, and automatically derives a library of program components and a neural search policy that can be used to efficiently solve other similar synthesis problems. The library and search policy bootstrap each other iteratively through a variant of \\\"wake-sleep\\\" approximate Bayesian learning. A new refactoring algorithm based on E-graph matching identifies common sub-components across synthesized programs, building a progressively deepening library of abstractions capturing the structure of the input domain. We evaluate on eight domains including classic program synthesis areas and AI tasks such as planning, inverse graphics, and equation discovery. We show that jointly learning the library and neural search policy leads to solving more problems, and solving them more quickly.\",\"PeriodicalId\":20557,\"journal\":{\"name\":\"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"106\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3453483.3454080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453483.3454080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

摘要

我们提出了一个名为DreamCoder的归纳程序合成系统,该系统输入一个由一个或几个示例指定的合成问题语料库,并自动导出程序组件库和神经搜索策略,该策略可用于有效地解决其他类似的合成问题。库和搜索策略通过“唤醒-睡眠”近似贝叶斯学习的一种变体迭代引导彼此。一种新的基于e图匹配的重构算法识别了合成程序中的公共子组件,构建了一个逐步深化的抽象库,捕获了输入域的结构。我们评估了八个领域,包括经典的程序合成领域和人工智能任务,如规划、逆图形和方程发现。我们表明,联合学习库和神经搜索策略可以解决更多的问题,并且更快地解决问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DreamCoder: bootstrapping inductive program synthesis with wake-sleep library learning
We present a system for inductive program synthesis called DreamCoder, which inputs a corpus of synthesis problems each specified by one or a few examples, and automatically derives a library of program components and a neural search policy that can be used to efficiently solve other similar synthesis problems. The library and search policy bootstrap each other iteratively through a variant of "wake-sleep" approximate Bayesian learning. A new refactoring algorithm based on E-graph matching identifies common sub-components across synthesized programs, building a progressively deepening library of abstractions capturing the structure of the input domain. We evaluate on eight domains including classic program synthesis areas and AI tasks such as planning, inverse graphics, and equation discovery. We show that jointly learning the library and neural search policy leads to solving more problems, and solving them more quickly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信