非点脉冲噪声去除的单斑低秩先验算法

Ruixuan Wang, E. Trucco
{"title":"非点脉冲噪声去除的单斑低秩先验算法","authors":"Ruixuan Wang, E. Trucco","doi":"10.1109/ICCV.2013.137","DOIUrl":null,"url":null,"abstract":"This paper introduces a `low-rank prior' for small oriented noise-free image patches: considering an oriented patch as a matrix, a low-rank matrix approximation is enough to preserve the texture details in the properly oriented patch. Based on this prior, we propose a single-patch method within a generalized joint low-rank and sparse matrix recovery framework to simultaneously detect and remove non-point wise random-valued impulse noise (e.g., very small blobs). A weighting matrix is incorporated in the framework to encode an initial estimate of the spatial noise distribution. An accelerated proximal gradient method is adapted to estimate the optimal noise-free image patches. Experiments show the effectiveness of our framework in removing non-point wise random-valued impulse noise.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"1 1","pages":"1073-1080"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Single-Patch Low-Rank Prior for Non-pointwise Impulse Noise Removal\",\"authors\":\"Ruixuan Wang, E. Trucco\",\"doi\":\"10.1109/ICCV.2013.137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a `low-rank prior' for small oriented noise-free image patches: considering an oriented patch as a matrix, a low-rank matrix approximation is enough to preserve the texture details in the properly oriented patch. Based on this prior, we propose a single-patch method within a generalized joint low-rank and sparse matrix recovery framework to simultaneously detect and remove non-point wise random-valued impulse noise (e.g., very small blobs). A weighting matrix is incorporated in the framework to encode an initial estimate of the spatial noise distribution. An accelerated proximal gradient method is adapted to estimate the optimal noise-free image patches. Experiments show the effectiveness of our framework in removing non-point wise random-valued impulse noise.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"1 1\",\"pages\":\"1073-1080\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了一种用于小定向无噪声图像补丁的“低秩先验”:将定向补丁视为矩阵,低秩矩阵近似足以保留适当定向补丁中的纹理细节。在此基础上,我们提出了一种基于广义联合低秩和稀疏矩阵恢复框架的单patch方法来同时检测和去除非点随机值脉冲噪声(例如,非常小的blobs)。在框架中加入加权矩阵来编码空间噪声分布的初始估计。采用加速近端梯度法估计最优无噪声图像块。实验证明了该框架在去除非点方向随机值脉冲噪声方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-Patch Low-Rank Prior for Non-pointwise Impulse Noise Removal
This paper introduces a `low-rank prior' for small oriented noise-free image patches: considering an oriented patch as a matrix, a low-rank matrix approximation is enough to preserve the texture details in the properly oriented patch. Based on this prior, we propose a single-patch method within a generalized joint low-rank and sparse matrix recovery framework to simultaneously detect and remove non-point wise random-valued impulse noise (e.g., very small blobs). A weighting matrix is incorporated in the framework to encode an initial estimate of the spatial noise distribution. An accelerated proximal gradient method is adapted to estimate the optimal noise-free image patches. Experiments show the effectiveness of our framework in removing non-point wise random-valued impulse noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信