{"title":"非交换环的极大图","authors":"Shouqiang Shen, Weijun Liu, Lihua Feng","doi":"10.1142/s1005386723000366","DOIUrl":null,"url":null,"abstract":"For a ring [Formula: see text] (not necessarily commutative) with identity, the comaximal graph of [Formula: see text], denoted by [Formula: see text], is a graph whose vertices are all the nonunit elements of [Formula: see text], and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. In this paper we consider a subgraph [Formula: see text] of [Formula: see text] induced by [Formula: see text], where [Formula: see text] is the set of all left-invertible elements of [Formula: see text]. We characterize those rings [Formula: see text] for which [Formula: see text] is a complete graph or a star graph, where [Formula: see text] is the Jacobson radical of [Formula: see text]. We investigate the clique number and the chromatic number of the graph [Formula: see text], and we prove that if every left ideal of [Formula: see text] is symmetric, then this graph is connected and its diameter is at most 3. Moreover, we completely characterize the diameter of [Formula: see text]. We also investigate the properties of [Formula: see text] when [Formula: see text] is a split graph.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Comaximal Graphs of Noncommutative Rings\",\"authors\":\"Shouqiang Shen, Weijun Liu, Lihua Feng\",\"doi\":\"10.1142/s1005386723000366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a ring [Formula: see text] (not necessarily commutative) with identity, the comaximal graph of [Formula: see text], denoted by [Formula: see text], is a graph whose vertices are all the nonunit elements of [Formula: see text], and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. In this paper we consider a subgraph [Formula: see text] of [Formula: see text] induced by [Formula: see text], where [Formula: see text] is the set of all left-invertible elements of [Formula: see text]. We characterize those rings [Formula: see text] for which [Formula: see text] is a complete graph or a star graph, where [Formula: see text] is the Jacobson radical of [Formula: see text]. We investigate the clique number and the chromatic number of the graph [Formula: see text], and we prove that if every left ideal of [Formula: see text] is symmetric, then this graph is connected and its diameter is at most 3. Moreover, we completely characterize the diameter of [Formula: see text]. We also investigate the properties of [Formula: see text] when [Formula: see text] is a split graph.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386723000366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386723000366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
对于具有恒等式的环[公式:见文](不一定交换),[公式:见文]的最大图,用[公式:见文]表示,其顶点是[公式:见文]的所有非单位元素,且两个不同的顶点[公式:见文]和[公式:见文]相邻当且仅当[公式:见文]。本文考虑由[公式:见文]导出的[公式:见文]的一个子图[公式:见文],其中[公式:见文]是[公式:见文]的所有左可逆元素的集合。我们描述那些[公式:见文]是完全图或星图的环[公式:见文],其中[公式:见文]是[公式:见文]的Jacobson根。我们研究了图[公式:见文]的团数和色数,并证明了如果[公式:见文]的每一个左理想都是对称的,那么这个图是连通的,并且它的直径不超过3。此外,我们完全描述了[公式:见文本]的直径。我们还研究了当[Formula: see text]是一个分割图时[Formula: see text]的性质。
For a ring [Formula: see text] (not necessarily commutative) with identity, the comaximal graph of [Formula: see text], denoted by [Formula: see text], is a graph whose vertices are all the nonunit elements of [Formula: see text], and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. In this paper we consider a subgraph [Formula: see text] of [Formula: see text] induced by [Formula: see text], where [Formula: see text] is the set of all left-invertible elements of [Formula: see text]. We characterize those rings [Formula: see text] for which [Formula: see text] is a complete graph or a star graph, where [Formula: see text] is the Jacobson radical of [Formula: see text]. We investigate the clique number and the chromatic number of the graph [Formula: see text], and we prove that if every left ideal of [Formula: see text] is symmetric, then this graph is connected and its diameter is at most 3. Moreover, we completely characterize the diameter of [Formula: see text]. We also investigate the properties of [Formula: see text] when [Formula: see text] is a split graph.