费多索夫星积的Futaki不变量

IF 0.6 3区 数学 Q3 MATHEMATICS
Laurent La Fuente-Gravy
{"title":"费多索夫星积的Futaki不变量","authors":"Laurent La Fuente-Gravy","doi":"10.4310/jsg.2019.v17.n5.a3","DOIUrl":null,"url":null,"abstract":"We study obstructions to the existence of closed Fedosov star products on a given Kähler manifold (M,ω, J). In our previous paper [14], we proved that the Levi-Civita connection of a Kähler manifold will produce a closed Fedosov star product (closed in the sense of Connes–Flato–Sternheimer [4]) only if it is a zero of a moment map μ on the space of symplectic connections. By analogy with the Futaki invariant obstructing the existence of constant scalar curvature Kähler metric, we build an obstruction for the existence of zero of μ and hence for the existence of closed Fedosov star product on a Kähler manifold.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"43 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Futaki invariant for Fedosov star products\",\"authors\":\"Laurent La Fuente-Gravy\",\"doi\":\"10.4310/jsg.2019.v17.n5.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study obstructions to the existence of closed Fedosov star products on a given Kähler manifold (M,ω, J). In our previous paper [14], we proved that the Levi-Civita connection of a Kähler manifold will produce a closed Fedosov star product (closed in the sense of Connes–Flato–Sternheimer [4]) only if it is a zero of a moment map μ on the space of symplectic connections. By analogy with the Futaki invariant obstructing the existence of constant scalar curvature Kähler metric, we build an obstruction for the existence of zero of μ and hence for the existence of closed Fedosov star product on a Kähler manifold.\",\"PeriodicalId\":50029,\"journal\":{\"name\":\"Journal of Symplectic Geometry\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symplectic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2019.v17.n5.a3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2019.v17.n5.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们研究了在给定的Kähler流形(M,ω, J)上存在封闭Fedosov星积的障碍。在我们之前的论文[14]中,我们证明了Kähler流形的列维-奇维塔连接仅当它是辛连接空间上的矩映射μ的零时才会产生封闭的Fedosov星积(在Connes-Flato-Sternheimer[4]意义上的封闭)。通过类比Futaki不变量阻碍常数标量曲率Kähler度规的存在性,我们建立了μ的零存在性和Kähler流形上闭Fedosov星积存在性的阻碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Futaki invariant for Fedosov star products
We study obstructions to the existence of closed Fedosov star products on a given Kähler manifold (M,ω, J). In our previous paper [14], we proved that the Levi-Civita connection of a Kähler manifold will produce a closed Fedosov star product (closed in the sense of Connes–Flato–Sternheimer [4]) only if it is a zero of a moment map μ on the space of symplectic connections. By analogy with the Futaki invariant obstructing the existence of constant scalar curvature Kähler metric, we build an obstruction for the existence of zero of μ and hence for the existence of closed Fedosov star product on a Kähler manifold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信