P. Pivkin, I. Minin, A. Ershov, V. Voronin, M. Volosova, V. Kuznetzov, A. Nadykto
{"title":"一种新的加工算法用于微铣刀型面识别","authors":"P. Pivkin, I. Minin, A. Ershov, V. Voronin, M. Volosova, V. Kuznetzov, A. Nadykto","doi":"10.1117/12.2641910","DOIUrl":null,"url":null,"abstract":"Modern methods of control geometry parameters of cutting tools often incorporate measuring operations performed using high-precision CCD cameras which work on the contrast-detection method. The key advantages of this method are the high speed of measurements, the simplicity of using general method on modern CNC measuring systems and a wide range of possibilities for controlling profile locations of surfaces. However, using this method largely depends on the resolution of the camera's ability and the size of the controlled area, which in turn imposes significant restrictions on the measurement of surface areas which are less than 10% of the frame area. This paper proposes a new way to measure the area of profile section of microtool surfaces, based on the identifying of a focused area throughout the entire frame area. This method makes it possible to recognize the nature of the focus distribution at different camera positions, which in turn makes it possible to measure the area of profile section of microtool surfaces when the size of the controlled area is less than 10% of the frame size to use the contrast autofocus method to incomparably increase.","PeriodicalId":52940,"journal":{"name":"Security and Defence Quarterly","volume":"16 1","pages":"122741A - 122741A-8"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new method for processing algorithm to recognition of the profile of micro-mills\",\"authors\":\"P. Pivkin, I. Minin, A. Ershov, V. Voronin, M. Volosova, V. Kuznetzov, A. Nadykto\",\"doi\":\"10.1117/12.2641910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern methods of control geometry parameters of cutting tools often incorporate measuring operations performed using high-precision CCD cameras which work on the contrast-detection method. The key advantages of this method are the high speed of measurements, the simplicity of using general method on modern CNC measuring systems and a wide range of possibilities for controlling profile locations of surfaces. However, using this method largely depends on the resolution of the camera's ability and the size of the controlled area, which in turn imposes significant restrictions on the measurement of surface areas which are less than 10% of the frame area. This paper proposes a new way to measure the area of profile section of microtool surfaces, based on the identifying of a focused area throughout the entire frame area. This method makes it possible to recognize the nature of the focus distribution at different camera positions, which in turn makes it possible to measure the area of profile section of microtool surfaces when the size of the controlled area is less than 10% of the frame size to use the contrast autofocus method to incomparably increase.\",\"PeriodicalId\":52940,\"journal\":{\"name\":\"Security and Defence Quarterly\",\"volume\":\"16 1\",\"pages\":\"122741A - 122741A-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Security and Defence Quarterly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2641910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Security and Defence Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2641910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new method for processing algorithm to recognition of the profile of micro-mills
Modern methods of control geometry parameters of cutting tools often incorporate measuring operations performed using high-precision CCD cameras which work on the contrast-detection method. The key advantages of this method are the high speed of measurements, the simplicity of using general method on modern CNC measuring systems and a wide range of possibilities for controlling profile locations of surfaces. However, using this method largely depends on the resolution of the camera's ability and the size of the controlled area, which in turn imposes significant restrictions on the measurement of surface areas which are less than 10% of the frame area. This paper proposes a new way to measure the area of profile section of microtool surfaces, based on the identifying of a focused area throughout the entire frame area. This method makes it possible to recognize the nature of the focus distribution at different camera positions, which in turn makes it possible to measure the area of profile section of microtool surfaces when the size of the controlled area is less than 10% of the frame size to use the contrast autofocus method to incomparably increase.