Xin Wang, Amir Khameneian, P. Dice, Bo Chen, M. Shahbakhti, J. Naber, Chad Archer, Qiuping Qu, C. Glugla, G. Huberts
{"title":"基于控制导向模型的火花点火发动机燃烧持续时间和点火正时预测递归最小二乘自适应闭环燃烧相位控制","authors":"Xin Wang, Amir Khameneian, P. Dice, Bo Chen, M. Shahbakhti, J. Naber, Chad Archer, Qiuping Qu, C. Glugla, G. Huberts","doi":"10.1115/dscc2019-9073","DOIUrl":null,"url":null,"abstract":"\n In homogeneous spark-ignition (SI) engines, ignition timing is used to control the combustion phasing (crank angle of fifty percent of fuel burned, CA50), which affects fuel economy, engine torque output, and emissions. This paper presents a model-based adaptive ignition timing prediction strategy using a control-oriented dynamic combustion model for real-time closed-loop combustion phasing control. The combustion model predicts the burn duration from ignition timing to CA50 (ΔθIGN-CA50) at Intake Valve Closing (IVC) for the upcoming cycle based on current engine operating conditions, including variable valve timing, predicted ignition timing, air-fuel ratio, engine speed, and engine load. To maintain the accuracy of combustion model and ignition timing prediction during the engine lifetime, a Recursive-Least-Square (RLS) with Variable Forgetting Factor (VFF) based adaptation algorithm is developed to handle both short term (operating-point-dependent) and long term (engine aging) model errors. Due to short term model errors and stochastic characteristics of cycle-to-cycle combustion variations, large model errors may occur during severe transient operating conditions (tip-in/tip-out), which can result in wrong adjustments and excessive adaptations. Since on-road SI engines are always operating in transient conditions, the ‘Heavy Transient Detection’ algorithm is developed to avoid fault adaptation and assist the adaptation algorithm to be stable. On-road vehicle testing data is used to evaluate the performance of the entire model-based adaptive burn duration and ignition timing prediction algorithm. With only 64 calibration points, a mean ignition timing prediction error of 0.2 Crank Angle Degree (CAD) and average iteration number of 2 shows the capability of adaptive ignition timing prediction, a significant reduction of calibration efforts, and potential of real-time application of the developed adaptive ignition timing prediction algorithm.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"7 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Control-Oriented Model-Based Burn Duration and Ignition Timing Prediction With Recursive-Least-Square Adaptation for Closed-Loop Combustion Phasing Control of a Spark Ignition Engine\",\"authors\":\"Xin Wang, Amir Khameneian, P. Dice, Bo Chen, M. Shahbakhti, J. Naber, Chad Archer, Qiuping Qu, C. Glugla, G. Huberts\",\"doi\":\"10.1115/dscc2019-9073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In homogeneous spark-ignition (SI) engines, ignition timing is used to control the combustion phasing (crank angle of fifty percent of fuel burned, CA50), which affects fuel economy, engine torque output, and emissions. This paper presents a model-based adaptive ignition timing prediction strategy using a control-oriented dynamic combustion model for real-time closed-loop combustion phasing control. The combustion model predicts the burn duration from ignition timing to CA50 (ΔθIGN-CA50) at Intake Valve Closing (IVC) for the upcoming cycle based on current engine operating conditions, including variable valve timing, predicted ignition timing, air-fuel ratio, engine speed, and engine load. To maintain the accuracy of combustion model and ignition timing prediction during the engine lifetime, a Recursive-Least-Square (RLS) with Variable Forgetting Factor (VFF) based adaptation algorithm is developed to handle both short term (operating-point-dependent) and long term (engine aging) model errors. Due to short term model errors and stochastic characteristics of cycle-to-cycle combustion variations, large model errors may occur during severe transient operating conditions (tip-in/tip-out), which can result in wrong adjustments and excessive adaptations. Since on-road SI engines are always operating in transient conditions, the ‘Heavy Transient Detection’ algorithm is developed to avoid fault adaptation and assist the adaptation algorithm to be stable. On-road vehicle testing data is used to evaluate the performance of the entire model-based adaptive burn duration and ignition timing prediction algorithm. With only 64 calibration points, a mean ignition timing prediction error of 0.2 Crank Angle Degree (CAD) and average iteration number of 2 shows the capability of adaptive ignition timing prediction, a significant reduction of calibration efforts, and potential of real-time application of the developed adaptive ignition timing prediction algorithm.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-9073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Control-Oriented Model-Based Burn Duration and Ignition Timing Prediction With Recursive-Least-Square Adaptation for Closed-Loop Combustion Phasing Control of a Spark Ignition Engine
In homogeneous spark-ignition (SI) engines, ignition timing is used to control the combustion phasing (crank angle of fifty percent of fuel burned, CA50), which affects fuel economy, engine torque output, and emissions. This paper presents a model-based adaptive ignition timing prediction strategy using a control-oriented dynamic combustion model for real-time closed-loop combustion phasing control. The combustion model predicts the burn duration from ignition timing to CA50 (ΔθIGN-CA50) at Intake Valve Closing (IVC) for the upcoming cycle based on current engine operating conditions, including variable valve timing, predicted ignition timing, air-fuel ratio, engine speed, and engine load. To maintain the accuracy of combustion model and ignition timing prediction during the engine lifetime, a Recursive-Least-Square (RLS) with Variable Forgetting Factor (VFF) based adaptation algorithm is developed to handle both short term (operating-point-dependent) and long term (engine aging) model errors. Due to short term model errors and stochastic characteristics of cycle-to-cycle combustion variations, large model errors may occur during severe transient operating conditions (tip-in/tip-out), which can result in wrong adjustments and excessive adaptations. Since on-road SI engines are always operating in transient conditions, the ‘Heavy Transient Detection’ algorithm is developed to avoid fault adaptation and assist the adaptation algorithm to be stable. On-road vehicle testing data is used to evaluate the performance of the entire model-based adaptive burn duration and ignition timing prediction algorithm. With only 64 calibration points, a mean ignition timing prediction error of 0.2 Crank Angle Degree (CAD) and average iteration number of 2 shows the capability of adaptive ignition timing prediction, a significant reduction of calibration efforts, and potential of real-time application of the developed adaptive ignition timing prediction algorithm.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.