Banach空间弱p紧算子的理想及其逼近性质

IF 0.9 4区 数学 Q2 Mathematics
Ju Myung Kim
{"title":"Banach空间弱p紧算子的理想及其逼近性质","authors":"Ju Myung Kim","doi":"10.5186/aasfm.2020.4547","DOIUrl":null,"url":null,"abstract":"We investigate the ideal Wp of weakly p-compact operators and its approximation property (Wp-AP). We prove that Wp =Wp ◦Wp and Vp = Kup ◦W −1 p and that for 1 < p ≤ ∞, a Banach space X has the Wp-AP if and only if the identity map on X is approximated by finite rank operators on X in the topology of uniform convergence on weakly p-compact sets. Also, we study the Wp-AP for classical sequence spaces and dual spaces.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The ideal of weakly p-compact operators and its approximation property for Banach spaces\",\"authors\":\"Ju Myung Kim\",\"doi\":\"10.5186/aasfm.2020.4547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the ideal Wp of weakly p-compact operators and its approximation property (Wp-AP). We prove that Wp =Wp ◦Wp and Vp = Kup ◦W −1 p and that for 1 < p ≤ ∞, a Banach space X has the Wp-AP if and only if the identity map on X is approximated by finite rank operators on X in the topology of uniform convergence on weakly p-compact sets. Also, we study the Wp-AP for classical sequence spaces and dual spaces.\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/aasfm.2020.4547\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/aasfm.2020.4547","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

研究了弱p紧算子的理想Wp及其逼近性质(Wp- ap)。证明了Wp =Wp◦Wp和Vp = Kup◦W−1 p,且对于1 < p≤∞,当且仅当X上的恒等映射被弱p紧集合上一致收敛拓扑上X上的有限秩算子逼近时,Banach空间X具有Wp- ap。此外,我们还研究了经典序列空间和对偶空间的Wp-AP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The ideal of weakly p-compact operators and its approximation property for Banach spaces
We investigate the ideal Wp of weakly p-compact operators and its approximation property (Wp-AP). We prove that Wp =Wp ◦Wp and Vp = Kup ◦W −1 p and that for 1 < p ≤ ∞, a Banach space X has the Wp-AP if and only if the identity map on X is approximated by finite rank operators on X in the topology of uniform convergence on weakly p-compact sets. Also, we study the Wp-AP for classical sequence spaces and dual spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信